

Writing a number in exponential form means to use a "shorthand" method to tell how many times a factor is being multiplied by itself. For example 2^4 means that the base, 2, is being multiplied by itself 4 times.

$$2^4 = 2 \cdot 2 \cdot 2 \cdot 2$$

More examples:

$$2^{2} = 2 \cdot 2$$

$$2^{3} = 2 \cdot 2 \cdot 2$$

$$2^{4} = 2 \cdot 2 \cdot 2 \cdot 2$$

$$2^{5} = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$$

$$a^{5} = a \cdot a \cdot a \cdot a \cdot a \cdot a$$

There is an important difference between $(-4)^2$ and -4^2 . The difference is the parentheses. In $(-4)^2$ the base is -4. We would read this as "negative four squared" or "the square of negative four."

$$(-4)^2 = (-4)(-4) = 16$$
 "The square of negative 4 is 16"
 $(-4)^3 = (-4)(-4)(-4) = -64$ "The cube of negative 4 is -64"

In -4^2 , the base is positive four. We could read this as "the negative of four squared" or "the opposite of the square of four."

 $-4^{2} = -(4 \cdot 4) = -16$ "The opposite of the square of 4 is -16." $-4^{3} = -(4 \cdot 4 \cdot 4) = -64$ "The opposite of the cube of 4 is -64."

NOTICE that when the base is a negative number (inside parentheses) that the answer will be positive if the exponent is <u>even</u> and negative if the exponent is <u>odd</u>. However, when the base is a positive number with a negative sign in front, the answer is <u>always</u> negative.

$$(-2)^{2} = (-2)(-2) = 4 \qquad -2^{2} = (2 \cdot 2) = -4
(-2)^{3} = (-2)(-2)(-2) = -8 \qquad -2^{3} = (2 \cdot 2 \cdot 2) = -8
(-2)^{4} = (-2)(-2)(-2)(-2) = 16 \qquad -2^{4} = (2 \cdot 2 \cdot 2 \cdot 2) = -16
(-2)^{5} = (-2)(-2)(-2)(-2)(-2) = -32 \qquad -2^{5} = (2 \cdot 2 \cdot 2 \cdot 2) = -32$$

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

Sometimes we have a problem which has more than one base. When that occurs we must simplify each base separately and then do the operation.

EXAMPLE

$$(-2)^3 \cdot 5^2 = (-2)(-2)(-2) \cdot (5)(5)$$

= -8 \cdot 25
= -200

EXAMPLE

$$\left(\frac{3}{2}\right)^2 \cdot \left(\frac{1}{2}\right)^2 = \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$
$$= \frac{9}{4} \cdot \frac{1}{4}$$
$$= \frac{9}{16}$$

EXE	ERCISES: Evaluate				
1.	2 ⁶	5.	5 ³	9.	$\left(\frac{1}{2}\right)^3$

2.	$(-3)^2$	6. -2^5	10. $(2)^2$ z^2
			$\left(\frac{-}{5}\right) \cdot 5^{2}$

3.
$$-3^2$$
 7. $(-2)^2 \cdot \frac{1}{4}$

4. $(-3)^4$ 8. $-3^2 \cdot 2^3$

KEY:

1. 64	3. –9	5. 125	7. 1	9. $\frac{1}{8}$
2. 9	4. 81	632	8. –72	10. 4

This instructional aid was prepared by the Tallahassee Community College Learning Commons.