Basic Exponents

Writing a number in exponential form means to use a "shorthand" method to tell how many times a factor is being multiplied by itself. For example 2^{4} means that the base, 2 , is being multiplied by itself 4 times.

$$
2^{4}=2 \cdot 2 \cdot 2 \cdot 2
$$

More examples:

$$
\begin{aligned}
& 2^{2}=2 \cdot 2 \\
& 2^{3}=2 \cdot 2 \cdot 2 \\
& 2^{4}=2 \cdot 2 \cdot 2 \cdot 2 \\
& 2^{5}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \\
& a^{5}=a \cdot a \cdot a \cdot a \cdot a
\end{aligned}
$$

There is an important difference between $(-4)^{2}$ and -4^{2}. The difference is the parentheses. In $(-4)^{2}$ the base is -4 . We would read this as "negative four squared" or "the square of negative four."

$$
\begin{array}{ll}
(-4)^{2}=(-4)(-4)=16 & \text { "The square of negative } 4 \text { is } 16 " \\
(-4)^{3}=(-4)(-4)(-4)=-64 & \text { "The cube of negative } 4 \text { is }-64 \text { " }
\end{array}
$$

In -4^{2}, the base is positive four. We could read this as "the negative of four squared" or "the opposite of the square of four."

$$
\begin{aligned}
& -4^{2}=-(4 \cdot 4)=-16 \\
& -4^{3}=-(4 \cdot 4 \cdot 4)=-64
\end{aligned}
$$

"The opposite of the square of 4 is -16 ."
"The opposite of the cube of 4 is -64 ."
NOTICE that when the base is a negative number (inside parentheses) that the answer will be positive if the exponent is even and negative if the exponent is odd. However, when the base is a positive number with a negative sign in front, the answer is always negative.

$$
\begin{aligned}
& (-2)^{2}=(-2)(-2)=4 \\
& (-2)^{3}=(-2)(-2)(-2)=-8 \\
& (-2)^{4}=(-2)(-2)(-2)(-2)=16 \\
& (-2)^{5}=(-2)(-2)(-2)(-2)(-2)=-32
\end{aligned}
$$

$$
\begin{aligned}
& -2^{2}=(2 \cdot 2)=-4 \\
& -2^{3}=(2 \cdot 2 \cdot 2)=-8 \\
& -2^{4}=(2 \cdot 2 \cdot 2 \cdot 2)=-16 \\
& -2^{5}=(2 \cdot 2 \cdot 2 \cdot 2 \cdot 2)=-32
\end{aligned}
$$

Sometimes we have a problem which has more than one base. When that occurs we must simplify each base separately and then do the operation.

EXAMPLE

$$
\begin{aligned}
(-2)^{3} \cdot 5^{2} & =(-2)(-2)(-2) \cdot(5)(5) \\
& =-8 \cdot 25 \\
& =-200
\end{aligned}
$$

EXAMPLE

$$
\begin{aligned}
\left(\frac{3}{2}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2} & =\frac{3}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \\
& =\frac{9}{4} \cdot \frac{1}{4} \\
& =\frac{9}{16}
\end{aligned}
$$

EXERCISES: Evaluate

1. 2^{6}
2. 5^{3}
3. $\left(\frac{1}{2}\right)^{3}$
4. $(-3)^{2}$
5. -2^{5}
6. $\left(\frac{2}{5}\right)^{2} \cdot 5^{2}$
7. -3^{2}
8. $(-2)^{2} \cdot \frac{1}{4}$
9. $(-3)^{4}$
10. $-3^{2} \cdot 2^{3}$

KEY:

1. 64
2. 9
3. -9
4. 81
5. 125
6. -32
7. 1
8. -72
9. $\frac{1}{8}$
10. 4
