

Chemistry for Allied health formula sheet

1 mol atoms = $6.022 * 10^{23}$ atoms
$1 cm^3 = 1 mL$
$1000 \ cal = 1 \ Kcal = 1 \ Cal$
$1 \ cal = 4.184 \ J$
STP = 1 atm and 0°C
1 mol of gas at STP = 22.4L

Prefix	Symbol	Factor
Giga	G	10 ⁹
Mega	М	10 ⁶
Kilo	K	10 ³
centi	С	10 ⁻²
milli	m	10 ⁻³
micro	μ	10 ⁻⁶
nano	n	10 ⁻⁹
110110		10

Fat
– contains 9 Calories(Kcal) per gram
Protiens
– contains 4 Calories(Kcal) per gram
Carbohydrates
– contains 4 Calories(Kcal) per gram

$$P_1V_1 = P_2V_2$$

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2} \qquad \qquad \frac{P_1 V_1}{T_1} = \frac{P_2}{T_2}$$

$$P_{1}V_{1} = P_{2}V_{2} \qquad \frac{P_{1}}{T_{1}} = \frac{P_{2}}{T_{2}} \qquad \frac{V_{1}}{T_{1}} = \frac{V_{2}}{T_{2}} \qquad P_{1}V_{1} = \frac{P_{2}V_{2}}{T_{2}} \qquad P_{total} = P_{1} + P_{2} + P_{3} + \dots + P_{n}$$

$$PV = nRT \qquad Density = \frac{mass}{volume} \quad ^{\circ}C = \frac{5}{9}(^{\circ}F - 32) \qquad ^{\circ}F = (\frac{9}{5} * ^{\circ}C) + 32$$

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

Chemistry for Allied health formula sheet

1 mol atoms = $6.022 * 10^{23}$ atoms
$1 cm^3 = 1 mL$
$1000 \ cal = 1 \ Kcal = 1 \ Cal$
$1 \ cal = 4.184 \ J$
STP = 1 atm and 0°C
1 mol of gas at STP = 22.4L

Prefix	Symbol	Factor
Giga	G	10 ⁹
Mega	М	10 ⁶
Kilo	K	10 ³
centi	С	10 ⁻²
milli	m	10 ⁻³
micro	μ	10 ⁻⁶
nano	n	10 ⁻⁹

Fat
contains 9 Calories(Kcal) per gram
Protiens
contains 4 Calories(Kcal) per gram
Carbohydrates
contains 4 Calories(Kcal) per gram

$$P_1V_1 = P_2V_2$$

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2} \qquad \frac{P_1 V_1}{T_1} = \frac{P_2 V_1}{T_2}$$

$$\frac{P_{1}}{T_{1}} = \frac{P_{2}}{T_{2}} \qquad \frac{V_{1}}{T_{1}} = \frac{V_{2}}{T_{2}} \qquad \frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}} \qquad P_{total} = P_{1} + P_{2} + P_{3} + \dots + P_{n}$$

$$Density = \frac{mass}{volume} \qquad {^{\circ}C} = \frac{5}{9}({^{\circ}F} - 32) \qquad {^{\circ}F} = (\frac{9}{5} * {^{\circ}C}) + 32$$

$$PV = nRT$$

$$Density = \frac{m}{vo.}$$

$$^{\circ}$$
C = $\frac{5}{9}$ ($^{\circ}$ F - 32)

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

Chemistry for Allied health formula sheet

$$K = {^{\circ}C} + 273 \qquad M = \frac{mote}{L \ solu}$$

$$-\log[H_3O^+] =$$

$$-\log[OH^{-}] = pOH$$

$$K = {}^{\circ}\text{C} + 273 \qquad M = \frac{moles}{L \ solution} \qquad -\log[H_3O^+] = pH \qquad -\log[OH^-] = pOH$$

$$[OH^-] \cdot [H_3O^+] = K_w \quad [H_3O^+] = 10^{-pH} \qquad K_w @ 25 {}^{\circ}\text{C} = 10^{-14}M \qquad pH < 7 \ is \ acidic$$

$$K_w$$
@25°C = $10^{-14}M$

$$pH = 7$$
 is neutral

$$pH > 7$$
 is basic

$$pH = 7 \text{ is neutral}$$
 $pH > 7 \text{ is basic}$ $\% \frac{mass}{volume} = \frac{g \text{ solute}}{mL \text{ solution}} * 100$

Equivalents(eq) = molesions * charge of ion

Name	Formula	Name	Formula
Acetate	$C_2H_3O_2$	Phosphate	PO ₄ ³⁻
Carbonate	CO ₃ ²⁻	Ammonium	NH_4^+
Bicarbonate	HCO ₃	Chlorite	ClO ₂
Hydroxide	OH ⁻	Chlorate	ClO ₃
Nitrite	NO ₂	Sulfite	SO ₃ ²⁻
Nitrate	NO ₃	Sulfate	SO ₄ ²⁻
Cyanide	CN ⁻		

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

Chemistry for Allied health formula sheet

$$K = {}^{\circ}C + 273$$

$$M = \frac{moles}{L \ solution}$$

$$-\log[H_3O^+] = pH$$

$$-\log[OH^{-}] = pOH$$

$$K = {}^{\circ}\text{C} + 273$$
 $M = \frac{moles}{L \ solution}$ $-\log[H_3O^+] = pH$ $-\log[OH^-] = pOH$ $[OH^-] \cdot [H_3O^+] = K_w \ [H_3O^+] = 10^{-pH}$ $K_w@25^{\circ}\text{C} = 10^{-14}M$ $pH < 7 \ is \ acidic$

$$[H_2O^+] = 10^{-pH}$$

$$K_w$$
@25°C = $10^{-14}M$

$$pH = 7$$
 is neutral

$$pH > 7$$
 is basic

$$pH = 7$$
 is neutral $pH > 7$ is basic % $mass/volume = \frac{g \ solute}{mL \ solution} * 100$

Equivalents(eq) = molesions * charge of ion

Name	Formula	Name	Formula
Acetate	$C_2H_3O_2^-$	Phosphate	PO ₄ ³⁻
Carbonate	CO ₃ ²⁻	Ammonium	$NH_4^{^+}$
Bicarbonate	HCO ₃	Chlorite	ClO ₂
Hydroxide	OH ⁻	Chlorate	ClO ₃
Nitrite	NO ₂	Sulfite	SO ₃ ²⁻
Nitrate	NO ₃	Sulfate	SO ₄ ²⁻
Cyanide	CN ⁻		

This instructional aid was prepared by the Tallahassee Community College Learning Commons.