

Composite Functions - Practice (and solutions)

For the given functions *f* and *g*, find (answer on the back)

(a)
$$(f \circ g)(x)$$

(b)
$$(g \circ f)(x)$$

(c)
$$(f \circ f)(x)$$

(a)
$$(f \circ g)(x)$$
 (b) $(g \circ f)(x)$ (c) $(f \circ f)(x)$ (d) $(g \circ g)(x)$

1.
$$f(x) = 2x + 3$$
, $g(x) = 3x$

2.
$$f(x) = \sqrt{x}$$
, $g(x) = x^2$

3.
$$f(x) = \frac{x+1}{x-1}$$
, $g(x) = \frac{x-1}{x+1}$

4.
$$f(x) = x + \frac{1}{x}$$
, $g(x) = x^2$

For each of the following problems, show that $(f \circ g)(x) = (g \circ f)(x) = x$.

1.
$$f(x) = 2x$$
, $g(x) = \frac{1}{2}x$

2.
$$f(x) = ax + b$$
, $g(x) = \frac{1}{a}(x - b)$, $a \neq 0$

3.
$$f(x) = \frac{1}{x}$$
, $g(x) = \frac{1}{x}$

4.
$$f(x) = \frac{2x+1}{x-1}$$
, $g(x) = \frac{x+1}{x-2}$

Answers

1 a)
$$f(g(x)) = 2(3x) + 3 = 6x + 3$$
 2 a) $f(g(x)) = \sqrt{(x^2)} = x$

b)
$$g(f(x)) = 3(2x + 3) = 6x + 9$$
 b) $g(f(x)) = (\sqrt{x})^2 = x$

c)
$$f(f(x)) = 2(2x+3) + 3 = 4x + 9$$
 c) $f(f(x)) = \sqrt{\sqrt{x}} = \sqrt[4]{x}$

d) $g(g(x)) = (x^2)^2 = x^4$

d)
$$g(g(x)) = 3(3x) = 9x$$

3 a)
$$f(g(x)) = \frac{\left(\frac{x-1}{x+1}\right)+1}{\left(\frac{x-1}{x+1}\right)-1} = -x$$

b)
$$g(f(x)) = \frac{(\frac{x+1}{x-1})-1}{(\frac{x+1}{x-1})+1} = \frac{1}{x}$$

c)
$$f(f(x)) = \frac{(\frac{x+1}{x-1})+1}{(\frac{x+1}{x-1})-1} = x$$

d)
$$g(g(x)) = \frac{(\frac{x-1}{x+1})-1}{(\frac{x-1}{x+1})+1} = -\frac{1}{x}$$

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

4 a)
$$f(g(x)) = (x^2) + \frac{1}{(x^2)} = \frac{x^4 + 1}{x^2}$$

b)
$$g(f(x)) = (x + \frac{1}{x})^2 = \frac{x^4 + 2x^2 + 1}{x^2}$$

c)
$$f(f(x)) = (x + \frac{1}{x}) + \frac{1}{(x + \frac{1}{x})} = \frac{x^4 + 3x^2 + 1}{x^3 + x}$$

d)
$$g(g(x)) = (x^2)^2 = x^4$$