Composite Functions

Given two functions, combine them in a way such that the outputs of one function become the inputs for the other, making it a composite function.

$$
(f \circ g)(x)=f(g(x)) \quad \text { OR } \quad(f \circ g)(x)=f \text { "composed of" } g
$$

Evaluating Composite Functions

Evaluate the function on the right side, and then substitute that result into the other function to find the answer.

Example: Given $f(x)=5 x-3$ and $g(x)=x^{2}$, find $(f \circ g)(3)$.

Solutions:

Step 1: Set up the equation and start from the right side.
$(f \circ g)(3)=f(g(3))$
Notice $g(3)$ is the input for $f(x)$, so start by solving for $g(3)$.

Given $g(x)=x^{2}$:
$g(3)=(3)^{2}$
$g(3)=9$

Step 2: Now substitute the answer for $g(3)$ into $f(x)$.

$$
f(g(3))=f(9)
$$

Given $f(x)=5 x-3$: $f(9)=5(9)-3$ $f(9)=42$

$$
\text { so }(f \circ g)(3)=42
$$

Finding the Composite Function

To compose two functions, redefine the composition by using the definition to find $f(g(x))$ or $g(f(x))$.

Example: Given $f(x)=x^{2}+4$ and $g(x)=\frac{1}{x}$, find $(g \circ f)(x)$.

Solution:

Step 1: Set up the function using the definition.
$(g \circ f)(x)=g(f(x))$
Notice $f(x)$ is the input for $g(x)$, so start with $f(x)$.

Given $f(x)=x^{2}+4$:
$g(f(x))=g\left(x^{2}+4\right)$

Step 2: Now substitute $x^{2}+4$ into
$g(x)$ for every x. Simplify as needed.
Given $g(x)=\frac{1}{x}$:
$g\left(x^{2}+4\right)=\frac{1}{\left(x^{2}+4\right)}$
so $g(f(x))=\frac{1}{x^{2}+4}$

Example: Given $f(x)=x^{2}+2 x-3$ and $g(x)=x+1$ find $f(g(x))$.

Solution:

Since $f(g(x))$ uses $g(x)$ as the input for f, substitute $x+1$ for $g(x)$ and simplify.

Step 1: Substitute.
$f(g(x))=f(x+1)$
$f(x+1)=(x+1)^{2}+2(x+1)-3$

Step 2: Simplify.
$f(x+1)=\left(x^{2}+2 x+1\right)+2 x+2-3$
$f(x+1)=\boldsymbol{x}^{2}+\mathbf{4 x}$

Practice Exercises:

1. Given $f(x)=2 x-6$ and $g(x)=x^{2}+3$, find $g(f(x))$.
2. Given $f(x)=4-x$ and $g(x)=x^{3}-1$, find $(f \circ g)(x)$.
3. Given $f(x)=3 x+4$ and $g(x)=2 x$, find $(f \circ g)(5)$.
4. Given $f(x)=x+7$ and $g(x)=\frac{1}{x^{2}-1}$ find $g(f(2))$.

Answers:

1. $g(f(x))=4 x^{2}-24 x+39 \quad$ 3. $f(g(5))=34$
2. $f(g(x))=5-x^{3}$
3. $g(f(2))=\frac{1}{80}$
