

Composite Functions

Given two functions, combine them in a way such that the outputs of one function become the inputs for the other, making it a **composite function**.

$$(f \circ g)(x) = f(g(x))$$
 OR $(f \circ g)(x) = f$ "composed of" g

Evaluating Composite Functions

Evaluate the function on the **right** side, and then substitute that result into the other function to find the answer.

Example: Given f(x) = 5x - 3 and $g(x) = x^2$, find $(f \circ g)(3)$.

Solutions:

Step 1: Set up the equation and start from the right side.

Step 2: Now substitute the answer for g(3) into f(x).

 $(f \circ g)(3) = f(g(3))$ Notice g(3) is the input for f(x), so start by solving for g(3).

Given $g(x) = x^2$: $g(3) = (3)^2$ g(3) = 9 f(g(3)) = f(9)

Given f(x) = 5x - 3: f(9) = 5(9) - 3f(9) = 42

so
$$(f \circ g)(3) = 42$$

Finding the Composite Function

To compose two functions, redefine the composition by using the definition to find f(g(x)) or g(f(x)).

Example: Given
$$f(x) = x^2 + 4$$
 and $g(x) = \frac{1}{x}$, find $(g \circ f)(x)$.

Solution:

Step 1: Set up the function using the definition.

 $(g \circ f)(x) = g(f(x))$ Notice f(x) is the input for g(x), so start with f(x).

Given $f(x) = x^2 + 4$: $g(f(x)) = g(x^2 + 4)$ Step 2: Now substitute $x^2 + 4$ into g(x) for every x. Simplify as needed. Given $g(x) = \frac{1}{x}$: $g(x^2 + 4) = \frac{1}{(x^2 + 4)}$

$$\operatorname{so} g(f(x)) = \frac{1}{x^2 + 4}$$

Example: Given $f(x) = x^2 + 2x - 3$ and g(x) = x + 1 find f(g(x)).

Solution:

Since f(g(x)) uses g(x) as the input for f, substitute x + 1 for g(x) and simplify.

Step 1: Substitute.	Step 2: Simplify.
f(g(x)) = f(x+1)	$f(x+1) = (x^2 + 2x + 1) + 2x + 2 - 3$
$f(x+1) = (x+1)^2 + 2(x+1) - 3$	$f(x+1) = x^2 + 4x$

Practice Exercises:

- 1. Given f(x) = 2x 6 and $g(x) = x^2 + 3$, find g(f(x)).
- 2. Given f(x) = 4 x and $g(x) = x^3 1$, find $(f \circ g)(x)$.
- 3. Given f(x) = 3x + 4 and g(x) = 2x, find $(f \circ g)(5)$.
- 4. Given f(x) = x + 7 and $g(x) = \frac{1}{x^2 1}$ find g(f(2)).

Answers:

1. $g(f(x)) = 4x^2 - 24x + 39$ 2. $f(g(x)) = 5 - x^3$ 3. f(g(5)) = 344. $g(f(2)) = \frac{1}{80}$

This instructional aid was prepared by the Tallahassee Community College Learning Commons.