Logarithms

A logarithm of a given number x, is the exponent required for the base a, to be raised to in order to produce that number x.

$$
\log _{a} x=y \quad \Leftrightarrow \quad a^{y}=x
$$

Note that \Leftrightarrow means "is equivalent to"

Logarithmic and Exponential Form

Change logarithm equations to exponential form or exponential equations to logarithmic form using the definition of a logarithm.

Example: Given $4^{3 / 2}=8$, change the equation to logarithmic form.

Solution:

Compare the equation to the definition and rewrite it.
Definition: $\log _{a} x=y \Leftrightarrow a^{y}=x \quad$ Notice that $a=4, x=8$, and Given: $4^{3 / 2}=8 \quad y=\frac{3}{2}$, respectively.

Therefore, using the definition: $4^{3 / 2}=8 \Leftrightarrow \log _{4} \mathbf{8}=\frac{\mathbf{3}}{\mathbf{2}}$
Example: Given $\log _{25} 5=\frac{1}{2}$, change the equation to exponential form.

Solution:

Compare the equation to the definition and rewrite it.
Definition: $\log _{a} x=y \Leftrightarrow a^{y}=x$
Given: $\log _{25} 5=\frac{1}{2}$
\Longleftrightarrow Notice that $a=25, x=5$, and

$$
y=\frac{1}{2}, \text { respectively. }
$$

Therefore, using the definition: $\log _{25} 5=\frac{1}{2} \Leftrightarrow \mathbf{2 5}{ }^{1 / 2}=\mathbf{5}$

Solving Logarithm and Exponential Equations

Evaluate logarithmic equations by using the definition of a logarithm to change the equation into a form that can then be solved.

Example: Given $3^{x-1}=7$, solve for x.

Solution:

Step 1: Set up the equation and use the definition to change it.

Step 2: Now use the properties of logarithms to solve.

Definition: $\log _{a} x=y \Leftrightarrow a^{y}=x$
Recall the Change of Base Property: Given $3^{x-1}=7$

Notice 3 is the base or a, and 7 is the given number.

$$
\log _{a} b=\frac{\log b}{\log a}
$$

Apply it to $\log _{3} 7$.
$3^{x-1}=7 \Leftrightarrow \log _{3} 7=x-1$

$$
\log _{3} 7=\frac{\log 7}{\log 3}
$$

Step 3: Use the order of operations to finish solving for x.
$x-1=\frac{\log 7}{\log 3}$
$x=\frac{\log 7}{\log 3}+1$
Example: Given $\log _{6}(x+2)=3$, solve for x.

Solution:

Step 1: Set up the equation and use the definition to change it.

Definition: $\log _{a} x=y \Leftrightarrow a^{y}=x$
Given $\log _{6}(x+2)=3$
Notice 6 is the base or a, and 3 is the exponent or y.
$\log _{6}(x+2)=3 \Leftrightarrow 6^{3}=x+2$

Step 2: Now use the order of operations to solve.
$6^{3}=x+2$
$216=x+2$
$214=x$
$x=214$

Expanding and Simplifying Logarithms

To expand or simplify logarithms, utilize the various properties of logarithms in conjunction with the definition.

Example: Given $\log _{3}\left(\frac{9 x^{2}}{\sqrt{x^{2}+1}}\right)$, expand the logarithm.

Solution:

Step 1: Expand the expression using the properties of logarithms.

Recall the Logarithm Multiplication and Division Properties:
$\log _{a} m n=\log _{a} m+\log _{a} n$
$\log _{a}\left(\frac{m}{n}\right)=\log _{a} m-\log _{a} n$
Apply them to $9 x^{2}$ and $\sqrt{x^{2}+1}$.
Given $\log _{3}\left(\frac{9 x^{2}}{\sqrt{x^{2}+1}}\right)$:
$\Rightarrow \log _{3} 9+\log _{3} x^{2}-\log _{3}\left(\sqrt{x^{2}+1}\right)$

Step 2: Now simplify further using the properties of logarithms and the definition.

Recall the Logarithm for Powers Property: $\log _{a} x^{c}=c \log _{a} x$
Apply it to the x^{2} and $\log _{3}\left(\sqrt{x^{2}+1}\right)$.

$$
\begin{aligned}
& \log _{3} 9+\log _{3} x^{2}-\log _{3}\left(\sqrt{x^{2}+1}\right) \\
& \Rightarrow \log _{3} 9+\log _{3} x^{2}-\log _{3}\left(x^{2}+1\right)^{1 / 2} \\
& \Rightarrow \log _{3} 9+2 \log _{3} x-\frac{1}{2} \log _{3}\left(x^{2}+1\right)
\end{aligned}
$$

By definition, $\log _{3} 9=2$ since $3^{2}=9$, so our final answer becomes:

$$
2+2 \log _{3} x-\frac{1}{2} \log _{3}\left(x^{2}+1\right)
$$

Example: Write $3 \log _{2} y-\log _{2} x-7 \log _{2} z$ as a single logarithm.

Solution:

To simplify the expression, work backwards with the logarithmic properties.

Step 1: Use the Logarithm for Powers Property where appropriate.

Given: $3 \log _{2} y-\log _{2} x-7 \log _{2} z$
Notice that it can be applied to $3 \log _{2} y$ and $7 \log _{2} z$.
$3 \log _{2} y-\log _{2} x-7 \log _{2} z$
$\Rightarrow \log _{2} y^{3}-\log _{2} x-\log _{2} z^{7}$

Step 2: Simplify using the Logarithm Multiplication and Division Properties. Use the order of operations as a guide.

$$
\begin{aligned}
& \log _{2} y^{3}-\log _{2} x-\log _{2} z^{7} \\
& \Rightarrow \log _{2} y^{3}-\left(\log _{2} x+\log _{2} z^{7}\right) \\
& \Rightarrow \log _{2} y^{3}-\log _{2} x z^{7} \\
& \Rightarrow \log _{2} \frac{y^{3}}{x z^{7}}
\end{aligned}
$$

Solving Expanded Logarithms

Solving expanded logarithms requires applying the definition of logarithms and all the logarithm properties as needed.

Example: Given $\ln (x-2)+\ln (x-3)=\ln (2 x+24)$, solve for x.

Solution:

Note: $\ln (x-2)$ is only valid if $x \geq 2, \ln (x-3)$ is only valid if $x \geq 3$, and $\ln (2 x+24)$ is only valid if $x \geq-12$. For the equation to be valid, all conditions must be met, so $x \geq 3$.

Step 1: Simplify the left side of the equation using the multiplication and division properties of logarithms.
$\ln (x-2)+\ln (x-3)=\ln (2 x+24)$
$\Rightarrow \ln (x-2)(x-3)=\ln (2 x+24)$
$\Rightarrow \ln \left(x^{2}-5 x+6\right)=\ln (2 x+24)$
Step 2: Use logarithm properties.
Recall logarithm properties of bases:
$\ln e^{x}=x$ and $e^{\ln x}=x$
$\ln \left(x^{2}-5 x+6\right)=\ln (2 x+24)$
Let both sides of the equation become the exponent of the base e, and apply the property.
$\Rightarrow e^{\ln \left(x^{2}-5 x+6\right)}=e^{\ln (2 x+24)}$
$\Rightarrow x^{2}-5 x+6=2 x+24$

Practice Exercises:

1. Given $\log _{4}(-x)+\log _{4}(6-x)=2$,

Solve for x .
2. Expand $\log _{2}\left(\frac{x}{\sqrt{x^{2}-1}}\right)$ completely.
3. Write the following as a single logarithm: $2 \log _{3} x+4-8 \log _{3} y$

Step 3: Combine like terms to solve for x.
$x^{2}-5 x+6=2 x+24$
$\Rightarrow x^{2}-7 x-18=0$
$\Rightarrow(x-9)(x+2)=0$
$x=9,-2$
Step 4: Check your answers. Recall that every logarithm must meet the conditions for the answer to be correct.

For $x=9$
$\ln ((9)-2)+\ln ((9)-3)=\ln (2(9)+24)$
$\Rightarrow \ln (7)+\ln (6)=\ln (42)$
$\Rightarrow \ln (7 \cdot 6)=\ln (42) \xrightarrow{\rightarrow}$ This is valid!
For $x=-2$
Since $-2 \not \geq 3$, it does not meet all the conditions, and is not valid.

Therefore: $\boldsymbol{x}=\mathbf{9}$

Answers:

1. $x=-2$
2. $\log _{2} x-\frac{1}{2} \log _{2}(x-1)-\frac{1}{2} \log _{2}(x+1)$
3. $\log _{3} \frac{81 x^{3}}{y^{8}}$
