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Logarithms 
 

A logarithm of a given number 𝑥, is the exponent required for the base 𝑎, to be raised to in 
order to produce that number 𝑥. 
 

log𝑎 𝑥 = 𝑦       ⇔       𝑎𝑦 = 𝑥 
 

Note that ⇔ means "𝑖𝑠 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜" 

 
 

Logarithmic and Exponential Form 
 

Change logarithm equations to exponential form or exponential equations to logarithmic 
form using the definition of a logarithm.

 

Example: Given 4
3

2⁄ = 8 , change the equation to logarithmic form. 

 

Solution: 
 
Compare the equation to the definition and rewrite it. 

Definition:  log𝑎 𝑥 = 𝑦   ⇔   𝑎𝑦 = 𝑥      

Given:  4
3

2⁄ = 8 
 

Notice that 𝑎 = 4, 𝑥 = 8, and 

𝑦 =
3

2
, respectively. 

 

Therefore, using the definition: 4
3

2⁄ = 8  ⇔  𝐥𝐨𝐠𝟒 𝟖 = 
𝟑

𝟐
 

 

Example: Given log
25

5 =
1

2
 , change the equation to exponential form.  

 

Solution: 

 

Compare the equation to the definition and rewrite it.  

Definition:  log𝑎 𝑥 = 𝑦   ⇔   𝑎𝑦 = 𝑥      

Given:  log25 5 =
1

2
 

 

Notice that 𝑎 = 25, 𝑥 = 5, and  

𝑦 =
1

2
, respectively. 

Therefore, using the definition: log25 5 = 
1
2

  ⇔   𝟐𝟓
𝟏

𝟐⁄ = 𝟓   
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Solving Logarithm and Exponential Equations 
 

Evaluate logarithmic equations by using the definition of a logarithm to change the 
equation into a form that can then be solved.

 
Example: Given 3𝑥−1 = 7 , solve for 𝑥. 
 

Solution: 
 

Step 1: Set up the equation and use the 
definition to change it. 
 
Definition: log𝑎 𝑥 = 𝑦  ⇔  𝑎𝑦 = 𝑥 
Given 3𝑥−1 = 7 
 
Notice 3 is the base or 𝑎, 
and 7 is the given number. 
   
3𝑥−1 = 7 ⇔ log3 7 = 𝑥 − 1  

Step 2: Now use the properties of  
logarithms to solve.  
 
Recall the Change of Base Property: 

log𝑎 𝑏 =
log 𝑏

log 𝑎
 

 
Apply it to log3 7. 
 

log3 7 =
log 7

log 3
 

 

Step 3: Use the order of operations to finish solving for 𝑥. 

𝑥 − 1 =  
log 7

log 3
 

𝒙 =  
𝐥𝐨𝐠 𝟕

𝐥𝐨𝐠 𝟑
+ 𝟏 

Example: Given log
6
(𝑥 + 2) = 3 , solve for 𝑥. 

 

Solution: 
 

Step 1: Set up the equation and use the 
definition to change it. 
 
Definition: log𝑎 𝑥 = 𝑦  ⇔  𝑎𝑦 = 𝑥 
Given log6(𝑥 + 2) = 3 
Notice 6 is the base or 𝑎, 
and 3 is the exponent or 𝑦. 
   
log6(𝑥 + 2) = 3 ⇔  63 = 𝑥 + 2  

Step 2: Now use the order of  
operations to solve.  
 
63 = 𝑥 + 2 
216 = 𝑥 + 2 
214 = 𝑥 
 
𝒙 =  𝟐𝟏𝟒  
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Expanding and Simplifying Logarithms 
 
To expand or simplify logarithms, utilize the various properties of logarithms in 
conjunction with the definition.   
 

Example: Given log
3

(
9𝑥2

√𝑥2 + 1
) , expand the logarithm. 

Solution: 
 

 

Step 1: Expand the expression using the 
properties of logarithms. 
 
Recall the Logarithm Multiplication  
and Division Properties:  
log𝑎 𝑚𝑛 = log𝑎 𝑚 + log𝑎 𝑛  

log𝑎 (
𝑚

𝑛
) = log𝑎 𝑚 − log𝑎 𝑛  

Apply them to 9𝑥2 and √𝑥2 + 1. 
 

Given log3 (
9𝑥2

√𝑥2 + 1
) : 

 

⇒ log3 9 + log3 𝑥2 − log3 (√𝑥2 + 1) 

Step 2: Now simplify further using the 
properties of logarithms and the definition. 
 
Recall the Logarithm for Powers Property:  
log𝑎 𝑥𝑐 = 𝑐log𝑎 𝑥 

Apply it to the 𝑥2and log3 (√𝑥2 + 1). 

 

log3 9 + log3 𝑥2 − log3 (√𝑥2 + 1) 

⇒ log3 9 + log3 𝑥2 − log3(𝑥2 + 1)
1

2⁄  

⇒ log3 9 + 2 log3 𝑥 −
1

2
log3(𝑥2 + 1) 

 
By definition, log3 9 = 2  since 32 = 9, 
so our final answer becomes: 

𝟐 + 𝟐 𝐥𝐨𝐠𝟑 𝒙 −
𝟏

𝟐
𝐥𝐨𝐠𝟑(𝒙𝟐 + 𝟏)

 

Example: Write 3 log
2

𝑦 − log
2

𝑥 − 7 log
2

𝑧  as a single logarithm. 

 

Solution: 
 
To simplify the expression, work backwards with the logarithmic properties. 
 
Step 1: Use the Logarithm for Powers 

Property where appropriate. 
 
Given: 3 log2 𝑦 − log2 𝑥 − 7 log2 𝑧 
Notice that it can be applied to 3 log2 𝑦 
and 7 log2 𝑧. 
 
3 log2 𝑦 − log2 𝑥 − 7 log2 𝑧 
⇒ log2 𝑦3 − log2 𝑥 − log2 𝑧7 

Step 2: Simplify using the Logarithm 
Multiplication and Division Properties.   
Use the order of operations as a guide. 

 

log2 𝑦3 − log2 𝑥 − log2 𝑧7 

⇒ log2 𝑦3 − (log2 𝑥 + log2 𝑧7) 

⇒ log2 𝑦3 − log2 𝑥𝑧7 

⇒ 𝐥𝐨𝐠𝟐

𝒚𝟑

𝒙𝒛𝟕
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Solving Expanded Logarithms 
 

Solving expanded logarithms requires applying the definition of logarithms and all the 

logarithm properties as needed. 
 

Example: Given ln(𝑥 − 2) + ln(𝑥 − 3) = ln(2𝑥 + 24) , solve for 𝑥. 

 

Solution: 
 
Note: ln(𝑥 − 2)  is only valid if 𝑥 ≥ 2, ln(𝑥 − 3)  is only valid if 𝑥 ≥ 3, and ln(2𝑥 + 24) 
is only valid if 𝑥 ≥ −12. For the equation to be valid, all conditions must be met, so 𝑥 ≥ 3. 
 
Step 1: Simplify the left side of the 
equation using the multiplication and 
division properties of logarithms. 
 
ln(𝑥 − 2) + ln(𝑥 − 3) = ln(2𝑥 + 24) 
 
⇒ ln(𝑥 − 2)(𝑥 − 3) = ln(2𝑥 + 24) 
⇒ ln(𝑥2 − 5𝑥 + 6) = ln(2𝑥 + 24) 

 
Step 2: Use logarithm properties.  
Recall logarithm properties of bases: 
ln 𝑒𝑥 = 𝑥 and 𝑒ln 𝑥 = 𝑥 
 
ln(𝑥2 − 5𝑥 + 6) = ln(2𝑥 + 24) 
Let both sides of the equation become the 
exponent of the base 𝑒, and apply the 
property. 
 

⇒ 𝑒ln(𝑥2−5𝑥+6) = 𝑒ln(2𝑥+24) 
⇒ 𝑥2 − 5𝑥 + 6 = 2𝑥 + 24 

Step 3: Combine like terms to solve for 𝑥.  

𝑥2 − 5𝑥 + 6 = 2𝑥 + 24 

⇒ 𝑥2 − 7𝑥 − 18 = 0 

⇒ (𝑥 − 9)(𝑥 + 2) = 0 

𝑥 = 9, −2 

 

Step 4: Check your answers. Recall that 

every logarithm must meet the conditions 
for the answer to be correct. 

For 𝑥 = 9 
ln((9) − 2) + ln((9) − 3) = ln(2(9) + 24) 
⇒ ln(7) + ln(6) = ln(42) 
⇒ ln(7 ⋅ 6) = ln(42)  ⇢ This is valid!  
 
For 𝑥 = −2 
Since −2 ≱ 3, it does not meet all the 
conditions, and is not valid.  
 
Therefore: 𝒙 = 𝟗 
 

Practice Exercises: 
 
1.  Given log4(−𝑥) + log4(6 − 𝑥) = 2, 
Solve for x. 

2.  Expand log2 (
𝑥

√𝑥2 − 1
)  completely. 

3.  Write the following as a single  
logarithm: 2 log3 𝑥 + 4 − 8 log3 𝑦 

Answers: 
 

1.  𝑥 = −2 

2.  log2 𝑥 −
1

2
log2(𝑥 − 1) −

1

2
log2(𝑥 + 1) 

3.  log3

81𝑥3

𝑦8
 


