

Logarithmic equations can sometimes be solved by exploiting the one to one property of logarithmic functions. That is this = that which can be used with logs log(this)=log(that).

For example, if  $\log_4 x = \log_4 5$  then x=5.

Solve each of the following equations involving logarithmic functions. Note you may first have to apply other properties of logarithms.

- 1.  $\log_3(3x 2) = 2$ 4.  $2\log_3(4 + x) - \log_3 9 = 2$
- 2.  $\log_5(x^2 + x + 4) = 2$  5.  $2\log_5 x = 3\log_5 4$
- 3.  $\log_4 x + \log_4 (x 3) = 1$ 6.  $\frac{1}{2}\log_3 x = 2\log_3 2$
- 7.  $\log_3(x-1)^2 = 2$ 8.  $\log_x 4 = 2$
- 9.  $\log_2(3x + 2) \log_4 x = 3$  (*Hint:* Use the change-of-base formula)
- 10.  $\log_a(x-1) \log_a(x+6) = \log_a(x-2) \log_a(x+3)$

Answers:

| 1) $x = \frac{11}{3}$               | 5) $x = 8$                    | 9) $x = \frac{26 \pm 8\sqrt{10}}{2}$ |
|-------------------------------------|-------------------------------|--------------------------------------|
| 2) $x = \frac{-1 \pm \sqrt{85}}{2}$ | 6) $x = 2$<br>7) $x = -2$ , 4 | 10) $x = \frac{9}{2}$                |
| 4) $x = 4$                          | 8) $x = 2$                    |                                      |

This instructional aid was prepared by the Tallahassee Community College Learning Commons.