MAC 1105 Solving Quadratic Equations by Completing the Square

Quadratic Equation - Any equation which can be written in the form of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$.
Completing the Square - Solving a Quadratic Equation by creating a Polynomial which can be factored as a Perfect Square Trinomial.

Example: Solve $x^{2}+2 x-8=0$ by Completing the Square.
a b c
Step 1: Move c to the opposite side of the equation.

$$
\begin{gathered}
x^{2}+2 x-8=0 \rightarrow x^{2}+2 x=8 \\
+8+8
\end{gathered}
$$

Step 2: Add $\left(\frac{\mathbf{b}}{2}\right)^{2}$ to each side of the equation. $\mathbf{b}=\mathbf{2}$
$\left(\frac{b}{2}\right)^{2}=\left(\frac{2}{2}\right)^{2}=1^{2}=1 \quad \rightarrow \quad x^{2}+2 x+\mathbf{1}=8+\mathbf{1} \quad \rightarrow \quad x^{2}+2 x+1=\mathbf{9}$

Step 3: Factor $x^{2}+2 x+1$ as a Perfect Square Trinomial. (Remember $\sqrt{ }$ and squares are inverses.)
$x^{2}+2 x+1=9$
$(x+1)(x+1)=9$
$(x+1)^{2}=9$
Step 4: Square Root both sides of the equation.
$\sqrt{(x+1)^{2}}= \pm \sqrt{9} \quad \rightarrow \quad \mathbf{x}+\mathbf{1}= \pm \mathbf{3}$

Step 5: Solve for \mathbf{x}.
$x+1=3$

$$
x+1=-3
$$

$-1-1$
$-1 \quad-1$
$\mathbf{x}=\mathbf{2}$
$x=-4$

Example: Solve $2 x^{2}-5 x-3=0$ by Completing the Square.
Step 1: Use Algebra to move c to the opposite side of the equation.
$2 x^{2}-5 x-3=0 \rightarrow 2 x^{2}-5 x=3$

$$
+3+3
$$

Step 2: Divide both sides of the equation by a. (You want the leading coefficient to be 1.)
$\frac{2}{2} x^{2}-\frac{5}{2} x=\frac{3}{2}$
Step 3: Add $\left(\frac{b}{2}\right)^{2}$ to each side of the equation.
$\left(\frac{\mathrm{b}}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2}=\left(\frac{5}{4}\right)^{2}=\frac{25}{16} \quad \rightarrow \quad \mathrm{x}^{2}-\frac{5}{2} \mathrm{x}+\frac{25}{16}=\frac{3}{2}+\frac{25}{16} \quad \rightarrow \quad \mathrm{x}^{2}-\frac{5}{2} \mathrm{x}+\frac{25}{16}=\frac{49}{16}$
Step 4: Factor $x^{2}-\frac{5}{2} x+\frac{25}{16}$ as a Perfect Square Trinomial.
$x^{2}-\frac{5}{2} x+\frac{25}{16}=\left(x-\frac{5}{4}\right)^{2} \rightarrow\left(x-\frac{5}{4}\right)^{2}=\frac{49}{16}$
Step 5: Square Root both sides of the equation.
$\sqrt{\left(x-\frac{5}{4}\right)^{2}}= \pm \sqrt{\frac{49}{16}} \quad \rightarrow \quad x-\frac{5}{4}= \pm \frac{7}{4}$
Step 6: Solve for \mathbf{x}.
$x-\frac{5}{4}=\frac{7}{4} \quad x-\frac{5}{4}=\frac{-7}{4}$

$$
+\frac{5}{4}+\frac{5}{4} \quad+\frac{5}{4}+\frac{5}{4}
$$

$\mathbf{x}=3 \quad \mathbf{x}=-\frac{1}{2}$

Practice Problems:

Solve the following Quadratic Equations by Completing the Square:

1) $x^{2}+4 x-21=0$

Solution: $\mathrm{x}=\mathbf{3 , - 7}$
2) $x^{2}-12 x=-20$

Solution: $\mathrm{x}=\mathbf{2 , 1 0}$
3) $3 x^{2}-5 x+2=0$

Solution: $\mathrm{x}=\frac{2}{3}, \mathbf{1}$
4) $4 x^{2}+19 x=-12$

Solution: $\mathrm{x}=-\frac{3}{4}, \mathbf{- 4}$

