

Piecewise Functions (Values and Graphs)

Piecewise functions occur when different parts of the domain are governed by different rules, or sub-functions. Similar to a piecewise functions, we have different rules for different parts of our lives, such as before and after learning to drive.

Example

Here is an example of a piecewise function:

We can determine values for F(x), or y, we would get if we are given a specific x.

- 2. F(0) = -2
- 4. F(3) = -2

1. F(-3) = 2(-3) + 1 = -6 + 1 = -5 hint: use sub-function 1 since -3 is included in that domain hint: use sub-function 2 since 0 is included in that domain 3. F(5) = -3(5) + 7 = -15 + 7 = -8 hint: use sub-function 3 since 5 is included in that domain hint: use sub-function 2 since 3 is included in that domain

Note: Watch which sub-function's domain actually has the equal bar, this means that it will include that value not just get really close.

You Try:

- 1. F(-5)
- 2. *F*(−1)
- 3. *F*(7)

Graphing:

Another important skill is to be able to graph a piecewise function. You will use the tools that you learned previously when graphing a linear function.

The domain can be indicated when graphing by using arrows, open circles and closed circles.

> or < use an open circle	> or < use a closed circle	$-\infty \ or + \infty$ use an arrow

LEARNING COMMONS

Let's graph the piecewise function from the example. Pick two points for each rule, usually endpoints unless they extend towards infinity.

1) F(x) = 2x + 1 if x < -1, this domain begins at $-\infty$ and stops at - 1, so we can pick x = -1 and any other x in this domain, let's try -2.

х	F(x) = y	endpoint
-2	-3	Go to the point and extend the line to show that it goes until $x = -\infty$
-1	-1	use open circle for the endpoint since we have an <

Note: you can also use the slope-intercept method

2) F(x) = -2 if $-1 \le x \le 3$. use the endpoints.

х	F(x) = y	endpoint
3	-2	Use a closed circle for both endpoints since we have <u><</u>
-1	-2	Use a closed circle for both endpoints since we have <u><</u>

3) F(x) = -3x + 7 if x > 3, this domain begins at x = 3 and ends at $+\infty$, pick any other point in the domain. *Note:* you can also use the slope-intercept method.

х	F(x) = y	endpoint	
3	-2	Would use an open circle but it overlaps with the previous line.	
5	-8	use an arrow at the end of the line since it will extend until $+\infty$.	

You Try:

4. Graph:	-2x - 4	if $x \leq -2$	
F(x) =	-2	$if -2 < x \le 2$	>
	3x - 7	if x > 2	

You Try Answers:

- **1.** F(-5) = 2(5) + 1 = -9, use sub-function 1;
- **3**. F(7) = -3(7) + 7 = -14, use sub-function 3;

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

4.