Piecewise Functions (Values and Graphs)

Piecewise functions occur when different parts of the domain are governed by different rules, or sub-functions. Similar to a piecewise functions, we have different rules for different parts of our lives, such as before and after learning to drive.

Example

Here is an example of a piecewise function:

$$
F(x)=\left\{\begin{array}{ll}
2 x+1 & \text { if } x<-1 \\
-2 & \text { if }-1 \leq x \leq 3 \\
-3 x+7 & \text { if } x>3
\end{array}\right\}
$$

We can determine values for $F(x)$, or y, we would get if we are given a specific x.

1. $F(-3)=2(-3)+1=-6+1=-5 \quad$ hint: use sub-function 1 since -3 is included in that domain
2. $F(0)=-2 \quad$ hint: use sub-function 2 since 0 is included in that domain
3. $F(5)=-3(5)+7=-15+7=-8 \quad$ hint: use sub-function 3 since 5 is included in that domain
4. $F(3)=-2 \quad$ hint: use sub-function 2 since 3 is included in that domain

Note: Watch which sub-function' s domain actually has the equal bar, this means that it will include that value not just get really close.

You Try:

1. $F(-5)$
2. $F(-1)$
3. $F(7)$

Graphing:

Another important skill is to be able to graph a piecewise function. You will use the tools that you learned previously when graphing a linear function.

The domain can be indicated when graphing by using arrows, open circles and closed circles.

$>$ or $<$ use an open circle	\geq or \leq use a closed circle	$-\infty$ or $+\infty$ use an arrow

W ILLLIAM D. LA W, JR.
LEARNING COMMONS
Let's graph the piecewise function from the example. Pick two points for each rule, usually endpoints unless they extend towards infinity.

1) $F(x)=2 x+1$ if $x<-1$, this domain begins at $-\infty$ and stops at -1 , so we can pick $x=-1$ and any other x in this domain, let's try -2.

\mathbf{x}	$F(x)=\mathrm{y}$	endpoint
-2	-3	Go to the point and extend the line to show that it goes until $\mathrm{x}=-\infty$
-1	-1	use open circle for the endpoint since we have an $<$

Note: you can also use the slope-intercept method
2) $F(x)=-2$ if $-1 \leq x \leq 3$. use the endpoints.

\mathbf{x}	$F(x)=\mathrm{y}$	endpoint
3	-2	Use a closed circle for both endpoints since we have \leq
-1	-2	Use a closed circle for both endpoints since we have \leq

3) $F(x)=-3 x+7$ if $x>3$, this domain begins at $x=3$ and ends at $+\infty$, pick any other point in the domain. Note: you can also use the slope-intercept method.

\mathbf{x}	$F(x)=\mathrm{y}$	endpoint
3	-2	Would use an open circle but it overlaps with the previous line.
5	-8	use an arrow at the end of the line since it will extend until $+\infty$.

You Try:

4. Graph:
$\left\{\begin{array}{ll}-2 x-4 & \text { if } x \leq-2 \\ -2 & \text { if }-2<x \leq 2 \\ 3 x-7 & \text { if } x>2\end{array}\right\}$

You Try Answers:

1. $\quad F(-5)=2(5)+1=-9$, use sub-function 1 ;
2. $F(7)=-3(7)+7=-14$, use sub-function 3 ;
3. $F(-1)=-2$, use sub-function 2 ;
4.

