Simplifying Rational Expressions

A rational expression is a quotient of two monomials and/or polynomials.

Examples:
$$\frac{3x+1}{2}$$
, $\frac{x^2-1}{5x^2+2x}$, $\frac{3y}{5y^2}$, $\frac{1}{2}$, etc

- <u>Beginning Steps</u>: Factor out the greatest common factor (GCF), if any, in all numerators and denominators. 1. 2. Factor completely all numerators and denominators.
- Remaining steps depend on the type of problem. See examples below for three types of 3.
- problems: (I) single expression; (II) products and quotients; (III) sums and differences.

Type I: Single Rational Expression						
Example #1 -	Simplify:	$\frac{w^2 + w - 12}{w^2 + 8w + 16}$				
Solution -	$\frac{w^2 + w - 12}{w^2 + 8w + 16}$		1.	there is no GCF in either numerator or denominator		
=	$\frac{(w-3) (w+4)}{(w+4) (w+4)}$		2.	factor numerator and denominator completely		
=	$\frac{(w-3)}{(w+4)}$		3.	cancel any like factors (representing 1)		
Example #2 -	Simplify:	$\frac{3x+6}{3x} \ .$				
<u>Solution</u> -	$\frac{3x+6}{3x}$					
=	$\frac{3(x+2)}{3x}$		1.	factor out GCF (of 3) in the numerator		
=	$\frac{3}{3} \cdot \frac{(x+2)}{x}$		2.	there's no other factorization to be done		
=	$\frac{x+2}{x}$		3.	cancel like factors (representing 1)		
<u>Note</u> - it is incorrect to cancel as follows: $\frac{3x + 6}{3x}$ 7 since the 3x in 3x+6 is not a factor but a term of the sum: 3x+6. However, $\frac{3(x + 2)}{3x} = \frac{x + 2}{x}$ is correct.						
Example #3 -	Simplify:	$\frac{150x - 6x^3}{6x^2 - 27x - 15}$				
Solution -	$\frac{150x - 6x^3}{6x^2 - 27x - 15}$					
=	$\frac{6x(25 - x^2)}{3(2x^2 - 9x - 5)}$		1.	factor out GCF of 6x in numerator and of 3 denominator		
=	$\frac{3 \cdot 2x(5+x) (5+x)}{3(2x+1) (x-x)}$	- <u>x)</u> 5)	2.	factor numerator and denominator completely		
=	$\frac{3 \cdot 2x (5 + x) (-1)}{3(2x + 1) (x)}$	1) (x - 5) x - 5)	3.	cancel like factors (representing 1)		
=	$\frac{-2x(5+x)}{2x+1}$					
	<u>Note</u> : 5 - x =	-1(-5+x) =	-1 (x - 5)). (factoring out -1 and rewriting)		

Type II: Products and Quotients

<u>Example #4</u> - <u>Solution</u> - = = =	Simplify: $\frac{4x^2 - 9}{x + 1} \div \frac{10x^2 + 19x + 6}{x^2 + 8x + 7} \cdot \frac{5x + 10}{2x - 3}$ $\frac{4x^2 - 9}{x + 1} \div \frac{10x^2 + 19x + 6}{x^2 + 8x + 7} \cdot \frac{5x + 10}{2x - 3}$ $\frac{4x^2 - 9}{x + 1} \cdot \frac{x^2 + 8x + 7}{10x^2 + 19x + 6} \cdot \frac{5x + 10}{2x - 3}$ $\frac{(2x + 3)(2x - 3)}{x + 1} \cdot \frac{(x + 7)(x + 1)}{(2x + 3)(5x + 2)} \cdot \frac{5(x + 2)}{2x - 3}$ $\frac{5(x + 2)(x + 7)}{5x + 2}$	(i) change division to mult. by the reciprocal(ii) factor completely and cancel(iii) write final answer as one fraction
<u>Example #5</u> - <u>Solution</u> - = =	Simplify: $\frac{3x-1}{2x^2 - 9x - 5} \cdot \frac{x^2 + 2x - 8}{6x - 2}$ $\frac{3x - 1}{2x^2 - 9x - 5} \cdot \frac{x^2 + 2x - 8}{6x - 2}$ $\frac{3x - 1}{(2x + 1) (x - 5)} \cdot \frac{(x + 4) (x - 2)}{2(3x - 1)}$	(i) factor completely(ii) cancel like factors

Type III: Sums and Differences

<u>Example #6</u> -	Add and simplify: $\frac{3y}{y^2 + 12y + 20} + \frac{y + y^2}{y^2 - 12y + 20}$	(i) factor denominators & find LCD
Solution -	$\frac{3y}{(y+10)(y+2)} + \frac{y+7}{(y+10)(y-10)}$	(ii) LCD is $(y+10)(y+2)(y-10)$
=	$\frac{3y}{(y+10)(y+2)} \cdot \frac{(y-10)}{(y-10)} + \frac{y+7}{(y+10)(y-10)} \cdot \frac{(y+2)}{(y+2)}$	(iii) write all fractions with LCD
=	$\frac{3y^2 - 30y}{(y+10)(y+2)(y-10)} + \frac{y^2 + 9y + 14}{(y+10)(y+2)(y-10)}$	(iv) add fractions
=	$\frac{3y^2 - 30y + y^2 + 9y + 14}{(y + 10)(y + 2)(y - 10)}$	(v) if possible, factor and reduce
=	$\frac{4y^2 - 21y + 14}{(y + 10) (y + 2) (y - 10)}$	(vi) (cannot factor or reduce further)
Example #7 -	Subtract and simplify: $\frac{x+3}{2x+3} = \frac{5}{2x+3}$	
	$1 3 2x^2 + 13x + 6 6x + 3$	
Solution -	$\frac{x+3}{2x^2+13x+6} = \frac{5}{6x+3}$	(i) factor all denominators and find LCD
<u>Solution</u> - =	$\frac{x+3}{2x^2+13x+6} - \frac{5}{6x+3}$ $\frac{x+3}{(2x+1)(x+6)} - \frac{5}{3(2x+1)}$	 (i) factor all denominators and find LCD (ii) LCD is: 3(2x + 1)(x + 6)
<u>Solution</u> - = =	$\frac{x+3}{2x^2+13x+6} - \frac{5}{6x+3}$ $\frac{x+3}{(2x+1)(x+6)} - \frac{5}{3(2x+1)}$ $\frac{x+3}{(2x+1)(x+6)} \cdot (\frac{3}{3}) - \frac{5}{3(2x+1)} \cdot (\frac{x+6}{(x+6)})$	 (i) factor all denominators and find LCD (ii) LCD is: 3(2x + 1)(x + 6) (iii) write all fractions with LCD
<u>Solution</u> - = = =	$\frac{x+3}{2x^2+13x+6} = \frac{5}{6x+3}$ $\frac{x+3}{(2x+1)(x+6)} = \frac{5}{3(2x+1)}$ $\frac{x+3}{(2x+1)(x+6)} \cdot \frac{3}{3} = \frac{5}{3(2x+1)} \cdot \frac{(x+6)}{(x+6)}$ $\frac{3x+9}{3(2x+1)(x+6)} = \frac{5x+30}{3(2x+1)(x+6)}$	 (i) factor all denominators and find LCD (ii) LCD is: 3(2x + 1)(x + 6) (iii) write all fractions with LCD (iv) subtract fractions

This instructional aid was prepared by the Tallahassee Community College Learning Commons.