Simplifying Expressions with Fractional Exponents

Review the rules for exponents and the steps adding, subtracting, and multiplying fractions.

Exponent Rules

a) $\left(x^{m}\right)\left(x^{n}\right)=x^{m+n}$
b) $\frac{x^{m}}{x^{n}}=x^{m-n}$
c) $\left(x^{m}\right)^{n}=x^{m n}$
d) $(x y)^{m}=x^{m} y^{m}$
e) $x^{-n}=\frac{1}{x^{n}}$
f) $\left(\frac{b}{a}\right)^{n}=\frac{b^{n}}{a^{n}}$
g) $\quad x^{\frac{m}{n}}=\sqrt[n]{x^{m}}$

Steps for Adding or Subtracting Fractions

1 First find the Least Common Denominator

$$
\begin{aligned}
& \frac{2}{3}+\frac{1}{7} \\
& \text { Least common Denominator }=21
\end{aligned}
$$

2. Rewrite the fractions with the same denominator.

$$
\frac{14}{21}+\frac{3}{21}
$$

3. Add or subtract the numerators $\frac{17}{21}$

Steps for Multiplying Fractions

Case 1: Multiply numerator and multiply denominators.

$$
\frac{3}{8} \cdot \frac{4}{9}=\frac{12}{72}=\frac{1}{6}
$$

Case 2: If possible "cross cancel" before multiplying.
1

2
Example: Simplify the following expression using rational fractional exponents.

$$
\left(\frac{25 x^{2 / 3} y^{3}}{x^{-1 / 4} y^{1 / 3}}\right)^{1 / 2}
$$

Solution: see exponent rules on the first page. These exponent rules are referred to in the steps below

$$
\begin{aligned}
& \left(\frac{25 x^{2 / 3} y^{3}}{x^{-1 / 4} y^{1 / 3}}\right)^{1 / 2} \\
& \left(\frac{25 x^{2 / 3} x^{1 / 4} y^{3}}{y^{1 / 3}}\right)^{1 / 2}(\text { ERe }) \quad \frac{1}{x^{-1 / 4}}=x^{1 / 4} \\
& \left.\left(\frac{25 x^{11 / 12} y^{3}}{y^{1 / 3}}\right)^{1 / 2}\right)_{(E R a)}^{\frac{2}{3}+\frac{1}{4}=\frac{8}{12}+\frac{3}{12}=\frac{11}{12}} \\
& \left(\frac{25 x^{11 / 12} y^{8 / 3}}{1}\right)^{1 / 2}(E R b) \quad \frac{3}{1}-\frac{1}{3}=\frac{9}{3}-\frac{1}{3}=\frac{8}{3} \\
& (25)^{1 / 2}\left(x^{11 / 12}\right)^{1 / 2}\left(y^{8 / 3}\right)^{1 / 2}(E R d)
\end{aligned}
$$

$$
\begin{aligned}
25^{1 / 2} \mathrm{x}^{11 / 24} \mathrm{y}^{4 / 3}(\text { ER }) & \frac{11}{12} \cdot \frac{1}{2}=\frac{11}{24} \\
& 4 \\
& \frac{8}{3} \cdot \frac{1}{22}=\frac{4}{3} \cdot \frac{1}{1}=\frac{4}{3} \\
5 \mathrm{x}^{11 / 24} \mathrm{y}^{4 / 3}(\text { (ERG) } & 25^{1 / 2}=\sqrt[2]{25}=5
\end{aligned}
$$

