

How to find an Inverse Function

Inverse Function – A function derived from an original function in which each input becomes an output and each output because an input for the function.

Example 1: Inverse Relations:

Find the inverse of the relation: $\{(1,2), (2,4), (7,-2), (9,-3), (10,6)\}$

Solution:

Interchange each x and y value and rewrite the relation: $\{(2, 1), (4, 2), (-2, 7), (-3, 9), (6, 10)\}$

Example 2: Inverse Functions

Find the inverse of the following function: f(x) = 8x + 9

Solution:

Step 1: Replace
$$f(x)$$
 with y:
 $y = 8x + 9$
Step 2: Interchange x and y:
 $x = 8y + 9$
Step 3: Solve for y (Subtract 9 from each
side):
 $x - 9 = 8y + 9 - 9 \rightarrow x - 9 = 8y$
Step 4: Divide by 8 on each side:
 $\frac{x-9}{8} = \frac{8y}{8} \rightarrow \frac{x-9}{8} = y$
Step 4: Replace y with $f^{-1}(x)$:
 $f^{-1}(x) = \frac{x-9}{8}$

Example 3:

Find the inverse of the following function:

$$f(x) = \frac{2}{x+3}$$

Step 1: Replace f(x) with y :

$$y = \frac{2}{x+3}$$

Step 2: Interchange x and y:

$$x = \frac{2}{y+3}$$

Step 3: Solve for y (Multiply by y + 3 on each side):

$$x(y+3) = \frac{2(y+3)}{(y+3)}$$
 \rightarrow $x(y+3) = 2$

Step 4: Divide by x on each side:

$$\frac{x}{x}(y+3) = \frac{2}{x} \qquad \rightarrow \qquad y+3 = \frac{2}{x}$$

Step 5: Subtract 3 on each side:

y + 3 − 3 =
$$\frac{2}{x}$$
 − 3 → y = $\frac{2}{x}$ − 3
Step 6: Replace y with f⁻¹(x):
f⁻¹(x) = $\frac{2}{x}$ − 3

Practice Problems

Find the inverse of the following functions:

1)
$$h(x) = x^2 - 4$$

2) $f(x) = \frac{4x-1}{-2x+3}$
3) $g(x) = \sqrt{5x-6}$

Solutions:

1) 1)
$$h^{-1}(x) = \sqrt{x+4}$$

2) $f^{-1}(x) = \frac{3x+1}{2x+4}$
3) $g^{-1}(x) = \frac{y^2+6}{5}$