

MAT1033 Bookmark

Slope of a line	$m=\frac{\mathrm{y}_{2}-y_{1}}{x_{2}-x_{1}}$				
Slope-intercept form	$\mathrm{y}=\mathrm{mx}+\mathrm{b}$				
Point-slope form	$y-y_{1}=m\left(x-x_{1}\right)$ or $y=m\left(x-x_{1}\right)+y_{1}$				
Slope of relational lines	$\mathrm{m}_{1}=\mathrm{m}_{2} ;$ parallel $m_{2}=\frac{-1}{m_{1}} ;$ perpendicular				
Quadratic formula	Given ax $x=\frac{-b \pm}{}+\sqrt{b^{2}-4 a c}$ $2 a a$				
Vertical line	$\mathrm{x}=\mathrm{a} ;$ Undefined slope				
Horizontal line	$\mathrm{y}=\mathrm{b} ;$ Slope $=0$	$	$	x -intercept	$\mathrm{Let} \mathrm{y}=0 ; \mathrm{f}(\mathrm{x})=0,0)$
:---	:---				
y -intercept	Let $\mathrm{x}=0 ;(0, \mathrm{f}(0))$				

Geometry Formulas

Area rectangle	A $=\mathrm{L} W$
Perimeter of rectangle	$\mathrm{P}=2 \mathrm{~L}+2 \mathrm{~W}$
Area of circle	$\mathrm{A}=\pi r^{2}$
Circumference of circle	$\mathrm{C}=2 \pi r$
Volume of a cube	$\mathrm{V}=\mathrm{s}^{3} \mathrm{or} \mathrm{LWH}$

Math Translation Words

$+\rightarrow$ Sum, increased by, addition, more than
$\mathrm{x} \rightarrow$ Product,

- \rightarrow Difference, subtract, decreased by, less than multiply, of quin $=\rightarrow$ Equal, is
${ }^{*}$ If $\mathrm{AB}=0$, then $\mathrm{A}=0$ or $\mathrm{B}=0$
${ }^{*}$ If $\mathrm{x}^{2}=\mathrm{k}, \mathrm{k}>0$, then $\mathrm{x}= \pm \sqrt{k}$

T
 MEANA COMNO

MAT1033 Bookmark

Exponent Rules

$m^{a} m^{b}=m^{a+b}$	$\left(m^{a} n^{c}\right)^{b}=m^{a b} n^{b c}$
$\frac{m^{a}}{m^{b}}=m^{a-b}$	$m^{-a}=\frac{1}{m^{a}}$
$m^{0}=1$	$\sqrt[b]{m^{a}}=m^{\frac{a}{b}}$
n even, $\sqrt[n]{a^{n}}=\|a\|$	n odd, $\sqrt[n]{a^{n}}=a$
$i=\sqrt{-1}, i^{2}=-1$	$\sqrt{-m}=i \sqrt{m}$

Factoring Summary

GCF:	$3 x^{2}+9 x+15 \rightarrow 3\left(x^{2}+3 x+5\right)$	
4 termsgrouping	$\begin{aligned} & 3 x^{3}+2 x^{2}-6 x-4= \\ & \left(3 x^{3}+2 x^{2}\right)+(-6 x-4)= \\ & x^{2}(3 x+2)-2(3 x+2) \\ & \rightarrow(3 x+2)\left(x^{2}-2\right) \end{aligned}$	
$a=1$	$x^{2}+4 x-12:$ find factors of -12 , add to $4, \rightarrow(\mathrm{x}-2)(\mathrm{x}+6)$	
$x^{2}-y^{2}$	($\mathrm{x}-\mathrm{y}$) $(\mathrm{x}+\mathrm{y}$)	
$x^{2}+y^{2}$	Does not factor/prime	
$\begin{gathered} a x^{2}+b x+c \\ a \neq 1 \end{gathered}$	$3 x^{2}+2 x-8$ factors of $3 \& 8$ that give difference of 2	$\begin{aligned} & (3,1) \&(1,2,4,8) \\ & 4 \cdot 1-3 \cdot 2= \\ & 4-6=-2 \\ & 3 x^{2}+2 x-8 \rightarrow \\ & (3 x-4)(x+2) \end{aligned}$
Perfect squares	$\begin{aligned} & \mathrm{p}^{2} \pm 2 \mathrm{pq}+\mathrm{q}^{2}: \\ & 4 x^{2}-12 x+9 \rightarrow(2 \mathrm{x}-3)^{2} \end{aligned}$	

Factoring steps when solving quadratic:

1. Get the equation $=0$
2. Factor out any common terms
3. Is it a difference of two squares?
4. Does it have 4 terms (grouping)
5. For a trinomial, use AC or trial/error.
6. Set all factors with a variable $=0$ and solve.
