

MAT1033 Bookmark

Slope of a line	$m = \frac{y_2 - y_1}{x_2 - x_1}$	
Slope-intercept	y = mx + b	
form		
Point-slope form	$y - y_1 = m(x - x_1)$ or	
	$y = m(x - x_1) + y_1$	
Slope of	$m_{1=}m_2$; parallel	
relational lines	$m_2 = \frac{-1}{m_1}$; perpendicular	
Quadratic	Given $ax^2+bx+c=0$;	
formula	$-b \pm \sqrt{b^2 - 4ac}$	
	x =	
Vertical line	x = a ;	
	Undefined slope	
Horizontal line	y = b; Slope = 0	
x-intercept	Let $y = 0$; $(f(x)=0, 0)$	
y-intercept	Let $x = 0$; (0, f(0))	
Geometry Formulas		
A	A T TAT	

Area rectangleA = L WPerimeter of rectangleP = 2L + 2WArea of circle $A = \pi r^2$ Circumference of circle $C = 2\pi r$ Volume of a cube $V = s^3$ or LWH

Math Translation Words

$+ \rightarrow$ Sum, increased by,	$x \rightarrow$ Product,
addition, more than	multiply, of
- \rightarrow Difference, subtract,	÷ →Divide,
decreased by, less than	quotient
\Rightarrow Equal, is	

*If AB = 0, then A = 0 or B = 0 *If $x^2 = k, k > 0$, then $x = \pm \sqrt{k}$

MAT1033 Bookmark

$m^a m^b = m^{a+b}$	$(m^a n^c)^b = m^{ab} n^{bc}$
$\frac{m^a}{m^b} = m^{a-b}$	$m^{-a} = \frac{1}{m^a}$
$m^0 = 1$	$\sqrt[b]{m^a} = m^{a \over b}$
n even, $\sqrt[n]{a^n} = a $	n odd, $\sqrt[n]{a^n} = a$
$i = \sqrt{-1}, i^2 = -1$	$\sqrt{-m} = i\sqrt{m}$

Factoring Summary

GCF:	$3x^2 + 9x + 15$ -	$\rightarrow 3(x^2 + 3x + 5)$			
4 terms-	$3x^3 + 2x^2 - 6x - 4 =$				
grouping	$(3x^3 + 2x^2) + (-6x - 4) =$				
	$x^{2}(3x+2) - 2(3x+2)$				
	$\rightarrow (3x+2)(x^2-2)$				
<i>a</i> = 1	$x^2 + 4x - 12$:find factors of				
	-12, add to 4, \rightarrow (x - 2)(x+6)				
$x^2 - y^2$	(x-y)(x+y)				
$x^2 + y^2$	Does not factor/prime				
$ax^2 + bx + c$	$3x^2 + 2x - 8$:	(3,1) & (1,2,4,8)			
<i>a</i> ≠ 1	factors of	$4 \cdot 1 - 3 \cdot 2 =$			
	3&8 that give	4 - 6 = -2			
	difference of 2	$3x^2 + 2x - 8 \rightarrow$			
	24	(3x - 4)(x + 2)			
	1 24 2 12				
	3 6				
	4 6				
Perfect	$p^2 \pm 2pq + q^2$:				
squares	$4x^2 - 12x + 9 \rightarrow (2x - 3)^2$				
Factoring steps when solving quadratic:					
1. Get the equation $= 0$					
2. Factor out any common terms					
3. Is it a difference of two squares?					
	4. Does it have 4 terms (grouping)				

- 5. For a trinomial, use AC or trial/error.
- 6. Set all factors with a variable = 0 and solve.