T
 W ILLIA M D. LA W I JR. LEARNINGCOMNONS
 POWER-ROOT TABLE

The square ($2^{\text {nd }}$ power) $(x)^{2}$	The square root (the root of 2) (\sqrt{x})
$0^{2}=0 \cdot 0=\mathbf{0}$	$\sqrt{0}=0$
$1^{2}=1 \cdot 1=1$	$\sqrt{1}=1$
$2^{2}=2 \cdot 2=4$	$\sqrt{4}=2$
$3^{2}=3 \cdot 3=9$	$\sqrt{9}=3$
$4^{2}=4 \cdot 4=16$	$\sqrt{16}=4$
$5^{2}=5 \cdot 5=\mathbf{2 5}$	$\sqrt{25}=5$
$6^{2}=6 \cdot 6=36$	$\sqrt{36}=6$
$7^{2}=7 \cdot 7=49$	$\sqrt{49}=7$
$8^{2}=8 \cdot 8=64$	$\sqrt{64}=8$
$9^{2}=9 \cdot 9=81$	$\sqrt{81}=9$
$10^{2}=10 \cdot 10=100$	$\sqrt{100}=10$
$11^{2}=11 \cdot 11=121$	$\sqrt{121}=11$
$12^{2}=12 \cdot 12=144$	$\sqrt{144}=12$
$13^{2}=13 \cdot 13=169$	$\sqrt{169}=13$
$14^{2}=14 \cdot 14=196$	$\sqrt{196}=14$
$15^{2}=15 \cdot 15=225$	$\sqrt{225}=15$
$16^{2}=16 \cdot 16=256$	$\sqrt{256}=16$
$17^{2}=17 \cdot 17=289$	$\sqrt{289}=17$
$18^{2}=18 \cdot 18=324$	$\sqrt{324}=18$
$19^{2}=19 \cdot 19=361$	$\sqrt{361}=19$
$20^{2}=20 \cdot 20=400$	$\sqrt{400}=20$
NEGATIVE POWERS Rule: $(-x)^{2} \neq x^{2}$ Example: $(-2)^{2} \neq-2^{2}$ $\begin{gathered} (-2)^{2}=-2 \cdot-2=\mathbf{4}_{\mathbf{4} \neq-\mathbf{4}}-2^{2}=-2 \cdot 2=-\mathbf{4} \\ \hline \end{gathered}$	
$(-3)^{2}=-3 \cdot-3=9$	$=-7 \cdot-7=49$
$(-4)^{2}=-4 \cdot-4=16$	$=-8 \cdot-8=64$
$(-5)^{2}=-5 \cdot-5=\mathbf{2 5}$	$=-9 \cdot-9=81$
$(-6)^{2}=-6 \cdot-6=36$	$=-10 \cdot-10=1000$

(T) W ILLIAM D. LAW, JR. LEARNING COMMONS POWER-ROOT TABLE

The cube $($ 3rd power) $(\boldsymbol{x})^{3}$	The cube root $(\sqrt[3]{\boldsymbol{x}})$
$0^{3}=0 \cdot 0 \cdot 0=\mathbf{0}$	$\sqrt[3]{0}=\mathbf{0}$
$1^{3}=1 \cdot 1 \cdot 1=\mathbf{1}$	$\sqrt[3]{1}=\mathbf{1}$
$2^{3}=2 \cdot 2 \cdot 2=\mathbf{8}$	$\sqrt[3]{8}=\mathbf{2}$
$3^{3}=3 \cdot 3 \cdot 3=\mathbf{2 7}$	$\sqrt[3]{27}=\mathbf{3}$
$4^{3}=4 \cdot 4 \cdot 4=\mathbf{6 4}$	$\sqrt[3]{64}=4$
$5^{3}=5 \cdot 5 \cdot 5=\mathbf{1 2 5}$	$\sqrt[3]{125}=\mathbf{5}$
$6^{3}=6 \cdot 6 \cdot 6=\mathbf{2 1 6}$	$\sqrt[3]{216}=6$
$7^{3}=7 \cdot 7 \cdot 7=\mathbf{3 4 3}$	$\sqrt[3]{343}=\mathbf{7}$
$8^{3}=8 \cdot 8 \cdot 8=512$	$\sqrt[3]{512}=8$
$9^{3}=9 \cdot 9 \cdot 9=\mathbf{7 2 9}$	$\sqrt[3]{729}=\mathbf{9}$
$10^{3}=10 \cdot 10 \cdot 10=\mathbf{1 0 0 0}$	$\sqrt[3]{1000}=\mathbf{1 0}$

NEGATIVE ROOTS
Rule: $\sqrt[3]{-x}$ and $\sqrt[5]{-x}$ exist, but $\sqrt{-x}$ and $\sqrt[4]{-x}$ cannot be done with integers.

$$
\begin{aligned}
& \text { Example: } \sqrt[3]{-8}=-2 \text { and } \sqrt[5]{-32}=-2 \\
& \sqrt[4]{-4} \neq \pm 2
\end{aligned}
$$

This is true for all odd and even roots.

$4^{\text {th }}$ power $(x)^{4}$	$5^{\text {th }}$ power $(x)^{5}$	$6^{\text {th }}$ power $(x)^{6}$
$0^{4}=\mathbf{0}$	$0^{5}=\mathbf{0}$	$0^{6}=\mathbf{0}$
$1^{4}=1$	$1^{5}=1$	$1^{6}=1$
$2^{4}=16$	$2^{5}=32$	$2^{6}=64$
$3^{4}=81$	$3^{5}=243$	$3^{6}=729$
$4^{4}=256$	$4^{5}=1024$	
$5^{4}=625$		

