WILLIAM D. LAW, JR. LEARNING **COMMONS SIMPLIFYING RATIONAL EXPONENTS**

To simplify expressions with rational exponents, the student needs to know the exponent rules and how to add, subtract and multiply fractions.

Exponent Rules (ER)				
a)	$(x^{m})(x^{n}) = x^{m+n}$	e)	$\mathbf{x}^{-\mathbf{n}} = \frac{1}{\mathbf{x}^{\mathbf{n}}}$	
b)	$\frac{\mathbf{x}^{\mathbf{m}}}{\mathbf{x}^{\mathbf{n}}} = \mathbf{x}^{\mathbf{m}-\mathbf{n}}$	f)	$\left(\frac{b}{a}\right)^n = \frac{b^n}{a^n}$	
c)	$(\mathbf{x}^{\mathbf{m}})^{\mathbf{n}} = \mathbf{x}^{\mathbf{m}\mathbf{n}}$	g)	$x^{\frac{m}{n}} = \sqrt[n]{x^m}$	
d)	$(xy)^m = x^m y^m$			

Steps	For	Adding	(or	Subtracting)	Fractions:
bicps	101	nuunig	(OI	Subtracting)	r actions.

1)	Find the Least Common Denominator. LCD = 21	$\frac{2}{3} + \frac{1}{7}$
2)	Rewrite each fraction with the same denominator.	$\frac{14}{21} + \frac{3}{21}$
3)	Add (or subtract) the numerators.	$\frac{17}{21}$

Steps	For	Multir	olving	Fractions:
bicps	1 01	main	<i>ny</i> ms	r actions.

<u>case I:</u>	Multiply numerators and multiply denominators:	$\frac{3}{8} \cdot \frac{4}{9} = \frac{12}{72} = \frac{1}{6}$
	<u>or</u> :	1 1
<u>case II:</u>	If possible "cross cancel" before multiplying.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

<u>Example</u>: Simplify the following expression using rational (fractional) exponents.

$$\left(\frac{25x^{2/3}y^3}{x^{-1/4}y^{1/3}}\right)^{1/2}$$

<u>Solution:</u> (See exponent rules on first page. These exponent rules are referred to in the steps below.)

 $\Big(\frac{25x^{2/3}y^3}{x^{-1/4}y^{1/3}}\Big)^{-1/2}$

$$= \left(\frac{25x^{2/3}x^{1/4}y^3}{y^{1/3}}\right)^{1/2} \qquad (ERe) \qquad \frac{1}{x^{-1/4}} = x^{1/4}$$

$$= \left(\frac{25x^{11/12}y^3}{y^{1/3}}\right)^{1/2} \qquad (ERa) \qquad \frac{2}{3} + \frac{1}{4} = \frac{8}{12} + \frac{3}{12} =$$

 $\frac{11}{12}$

$$= \left(\frac{25x^{11/12}y^{8/3}}{1}\right)^{1/2} \qquad (ERb) \qquad \frac{3}{1} - \frac{1}{3} = \frac{9}{3} - \frac{1}{3} = \frac{8}{3}$$

$$= (25)^{1/2} (x^{11/12})^{1/2} (y^{8/3})^{1/2}$$
(ERd)

$$= 25^{1/2} x^{11/24} y^{4/3} \qquad (ERc) \qquad \frac{11}{12} \cdot \frac{1}{2} = \frac{11}{24}$$

$$\stackrel{4}{3} \cdot \frac{1}{2} = \frac{4}{3} \cdot \frac{1}{1} = \frac{4}{3}$$

$$= 5 x^{11/12} y^{4/3} \qquad (ERg) \qquad 25^{1/2} = \sqrt[2]{25} = 5$$

This instructional aid was prepared by the Tallahassee Community College Learning Commons.