Slope-Intercept Form and Point-Slope Form

Slope of the line	$m=\frac{r i s e}{r u n}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Slope-Intercept Form	$y=m x+b \quad m$ is slope; b is y-intercept
Point-Slope Form	$y=m\left(x-x_{1}\right)+y_{1}$ or $\quad y-y_{1}=m\left(x-x_{1}\right)$
Slope of parallel lines	$m_{1}=m_{2}$ (slopes are the same)
Slope of perpendicular lines	$m_{1} m_{2}=-1$ (slopes are opposite \& reciprocal)
Equations of Horizontal and Vertical Lines	$y=b$ horizontal line $x=a$ vertical line, where a \& b are constants

Example (1): Write the slope - intercept equation of a line which passes through (0,-7) whose slope is 2.

Solution:

Slope-intercept equation is $y=m x+b$. What we need to complete this equation are slope $(m) \&$ y -intercept $(0, b)$, and the problem provides both information.

$$
m=2 \text { and } b=-7 \quad \text { The equation of the line is } y=2 x-7
$$

Example (2): Write the slope-intercept equation of a line which passes through $\begin{gathered}{\underset{1}{1}}^{1}, y_{1} \\ (0,4)\end{gathered}$ and x_{2}, y_{2}
$(3,-5)$.

Solution:

Slope-intercept equation is $y=m x+b$. What we need to complete this equation are slope $(m) \&$ y -intercept $(0, b)$, however, we only have y -intercept.
To find the slope, $\quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-5-4}{3-0}=\frac{-9}{3}=-3$

$$
m=-3 \text { and } b=4 \text { The equation of the line is } y=-3 x+4
$$

Example (3): Write the slope-intercept equation of a line which passes through $\binom{x_{1}, y_{1}}{-1,4}$ whose slope is 5 .

Solution:

Slope-intercept equation is $y=m x+b$. What we need to complete this equation are slope $(m) \&$ y-intercept $(0, b)$, however, we only have slope. Here there are two ways to find the equation of the line.

Method We will substitute m and $\left(x_{1}, y_{1}\right)$ in the form $y=m x+b$ to solve for b.

$$
\begin{aligned}
m=5,\left(x_{1}, y_{1}\right)=(-1,4) \quad 4 & =5(-1)+b \\
& =>\quad b=9
\end{aligned}
$$

The equation of the line is $y=5 x+9$

Method II Since we are given slope m and an ordered pair $\left(x_{1}, y_{1}\right)$, we can use Point-slope form to find equation of the line.

Point-slope form is $y=m\left(x-x_{1}\right)+y_{1} \quad y=5(x-(-1))+4$

$$
\begin{array}{rll}
m=5,\left(x_{1}, y_{1}\right)=(-1,4) \quad & \Rightarrow y=5(x+1)+4 & \text { Simplify the parenthesis } \\
& \Rightarrow y=5 x+5+4 & \text { Distribute } 5 \text { into parenthesis } \\
& \Rightarrow y=5 x+9 &
\end{array}
$$

Example (4): Write the slope-intercept equation of a line which passes through $\begin{gathered}x_{1}, y_{1} \\ (1,3)\end{gathered}$ and x_{2}, y_{2}
$(-5,-1)$.

Solution:

Slope-intercept equation is $y=m x+b$. What we need to complete this equation are slope $(m) \&$ y -intercept $(0, b)$. However, we are given two ordered pairs $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ without slope and y intercept. Therefore, we need to find the slope first. Then we can use the two methods discussed on Example (3) to find the equation of the line.

$$
\left(x_{1}, y_{1}\right) \quad\left(x_{2}, y_{2}\right)
$$

To find the slope between two ordered pairs, $(1,3)$ and $(-5,-1) \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-3}{-5-1}=\frac{-4}{-6}=\frac{2}{3}$
Method I Now we have slope, we will substitute m and $\left(x_{1}, y_{1}\right)$ in the form $y=m x+b$ to solve for b.

$$
\begin{aligned}
m=\frac{2}{3},\left(x_{1}, y_{1}\right)=(1,3) & 3=\frac{2}{3}(1)+b \\
& \Rightarrow \quad b=\frac{7}{3}
\end{aligned}
$$

The equation of the line is $y=\frac{2}{3} x+\frac{7}{3}$
Method II We also can use Point-slope form to find the equation of the line.

$$
\begin{array}{ll}
\text { Point-slope form is } y=m\left(x-x_{1}\right)+y_{1} & y=\frac{2}{3}(x-1)+3 \\
m=\frac{2}{3},\left(x_{1}, y_{1}\right)=(1,3) & \\
& \Rightarrow=\frac{2}{3} x-\frac{2}{3}+3 \quad \text { Distribute } \frac{2}{3} \text { into parenthesis } \\
\Rightarrow & y=\frac{2}{3} x-\frac{2}{3}+\frac{9}{3} \quad \text { Combine like term } \\
& \Rightarrow y=\frac{2}{3} x+\frac{7}{3}
\end{array}
$$

Example (5): Write the slope-intercept equation of a line which is parallel to $y=4 x-2$, passing through (1,3).

$$
x_{1}, y_{1}
$$

Solution:

Slope-intercept equation is $y=m x+b$. What we need to complete this equation are slope $(m) \&$ y -intercept $(0, b)$. Since the line we're looking for is parallel to $y=4 x-2$, their slopes are the same, $m=4$.

Method We will substitute m and $\left(x_{1}, y_{1}\right)$ in the form $y=m x+b$ to solve for b.

$$
m=4,\left(x_{1}, y_{1}\right)=(1,3) \quad 3=4(1)+b \quad \Rightarrow \quad b=-1
$$

The equation of the line is $y=4 x-1$

Method II We also can use Point-slope form to find the equation of the line.
Point-slope form is $y=m\left(x-x_{1}\right)+y_{1} \quad y=4(x-1)+3$

$$
\begin{array}{rll}
m=4,\left(x_{1}, y_{1}\right)=(1,3) & & y=4 x-4+3
\end{array} \quad \text { Distribute } 4 \text { into parenthesis }
$$

Example (6): Write the slope-intercept equation of a line which is perpendicular to $y=-\frac{1}{3} x+4$, passing through $\begin{gathered}x_{1}, y_{1} \\ (-3,5) \text {. }\end{gathered}$

Solution:

Slope-intercept equation is $y=m x+b$. What we need to complete this equation are the slope $(m) \&$ y-intercept $(0, b)$. Since our line is perpendicular to $y=-\frac{1}{3} x+4$ (which was given), we can find the slope of our line by taking the opposite sign and using the reciprocal of the given line which has a slope of $m=-\frac{1}{3}$. Therefore, the slope of our line is $m=3$ (the perpendicular one to the given line)

Method I We will substitute m and $\left(x_{1}, y_{1}\right)$ in the form $y=m x+b$ to solve for b.

$$
\begin{array}{ll}
m=3,\left(x_{1}, y_{1}\right)=(-3,5) & 5=3(-3)+b \\
=> & 5=-9+b \\
=> & b=14
\end{array}
$$

The equation of the line is $y=3 x+14$
Method II We also can use Point-slope form to find the equation of the line.

$$
\begin{aligned}
& \text { Point-slope form is } y=m\left(x-x_{1}\right)+y_{1} \\
& \qquad \begin{array}{lll}
& y=3(x-(-3))+5 & \\
\qquad m=3,\left(x_{1}, y_{1}\right)=(-3,5) & y=3(x+3)+5 & \text { Simplify the parenthesis } \\
& => & y=3 x+9+5
\end{array} \quad \text { Distribute } 5 \text { into parenthesis } \\
& \\
& \\
& \\
&
\end{aligned}
$$

x_{1}, y_{1}
 Example (7): Write an equation of a vertical line which passes through ($-1,6$).

Solution:

The equation of a vertical line is $x=a$
The x-coordinate of the point $(-1,6)$ is -1 . Therefore, the equation of the vertical line is $x=-1$

$$
x_{1}, y_{1}
$$

Example (8): Write an equation of a horizontal line which passes through $\left(\frac{3}{4},-\frac{5}{6}\right)$.

Solution:

The equation of a horizontal line is $y=b$
The y-coordinate of the point $\left(\frac{3}{4},-\frac{5}{6}\right)$ is $-\frac{5}{6}$. Therefore, the equation of the horizontal line is $y=-\frac{5}{6}$

Exercises:

1. Write the slope - intercept equation of a line which passes through $(0,5)$ whose slope is 4 .
2. Write the slope-intercept equation of a line which passes through $(0,-3)$ and $(4,5)$.
3. Write the slope-intercept equation of a line which passes through $(4,0)$ and $(7,-1)$.
4. Write the slope-intercept equation of a line which is parallel to $y=3 x+5$, passing through $(-6,3)$
5. Write the slope-intercept equation of a line which is perpendicular to $y=7 x+2$, passing through $(3,2)$
6. Write an equation of a horizontal line which passes through $(5,-1)$
7. Write an equation of a vertical line which passes through $\left(8, \frac{7}{3}\right)$.

Answers:

1. $y=4 x+5$
2. $y=2 x-3$
3. $y=-\frac{1}{3} x+\frac{4}{3}$
4. $y=3 x+21$
5. $y=-\frac{1}{7} x+\frac{17}{7}$
6. $y=-1$
7. $x=8$
