Rules of Divisibility

Divisible by:	Test	Example
2	Last digit is even ($=0,2,4,6$ or 8$)$	$\begin{aligned} & \text { 3,489,076: } \\ & \text { Last digit }=6 \text { (even) } \\ & 6=3 \times 2 \end{aligned}$
3	1. The sum of the digits of the number is divisible by 3 2. Can repeat until sum is 2 -digit number that is/not recognizably divisible by 3	$\begin{aligned} & 16,499,205,854,376: \\ & 1+6+4+9+9+2+0+5 \\ & +8+5+4+3+7+6=69 \\ & 6+9=15 \\ & 15=5 \times 3 \end{aligned}$
4	1. Last 2 digits are divisible by 4 2. Tens digit is even and the ones digit $=0,4$, or 8 3. Tens digit is odd and the ones digit $=2$ or 6	$358,912:$ 1. Last 2 digits $=12$ $12=3 \times 4$ 2. Tens digit $=1$, odd $\&$ ones digit $=\mathbf{2}$
5	Last digit is 5 or 0	$\begin{aligned} & \text { 3,783,953,495: } \\ & \text { Last digit = } \mathbf{5} \end{aligned}$
6	Divisible by 2 (even) and 3	$\begin{aligned} & 57,342 \\ & \text { Last digit }=\mathbf{2} \text { (even) and } \\ & 5+7+3+4+2=21 \text {, divisible by } 3 \end{aligned}$
7	Double the last digit, then subtract the result from the rest of the digits. Repeat for larger numbers until result is a 2-digit number; 2 -digit number is divisible by 7	$\begin{aligned} & 357: \\ & 2 \times 7=14 \text { (double the last digit) } \\ & 35-14=21 \text { (subtract) } \\ & 21=3 \times 7 \end{aligned}$
8	1. Hundreds digit even: last 2 digits divisible by 8 2. Hundreds digit odd: add 4 to the last 2 digits and sum is divisible by 8 3. Last 3 digits divisible by 8	986,104: 1. Hundreds digit $=1$, odd $04+4=8$ 2. Last 3 digits $=104$ $104=13 \times 8$
9	The sum of the digits of the number is divisible by 9	$\begin{aligned} & 24,343,785: \\ & 2+4+3+4+3+7+8+5=36 \\ & 36=4 \times 9 \end{aligned}$
10	Last digit is 0	$\begin{aligned} & \text { 34,789,013,467,593,487,540: } \\ & \text { Last digit = } \mathbf{0} \end{aligned}$
11	1. Alternately subtract, then add the digits from L to R; the sum is divisible by 11 2. Subtract the last digit from the rest	$\begin{aligned} & \text { 918,082: } \\ & \text { 1. } \quad 9-1+8-0+8-2=22 \\ & \quad 22=2 \times 11 \\ & 627: \\ & \text { 2. } \quad 62-7=55 \\ & \quad 55=5 \times \mathbf{1 1} \end{aligned}$

Divisible by:	Test	Example
12	Divisible by 3 and 4	324: $3+2+4=9$, divisible by $\mathbf{3}$ and Last 2 digits $=24$, divisible by 4
13	Add 4 times the last digit to the rest of the digits. Repeat until sum is/not recognizably divisible by 13	$\begin{aligned} & 637: \\ & 63+(7 \times 4)=91 \\ & 9+(1 \times 4)=13 \end{aligned}$
14	Divisible by 2 and 7	182: Last digit $=2$ (even), divisible by 2 and $2 \times 2=4$ (double the last digit) $18-4=14$, divisible by 7
15	Divisible by 3 and 5	345: $3+4+5=12$, divisible by 3 and Last digit $=5$, divisible by 5
16	1. Thousands place even: take the last 3 digits 2. Thousands place odd: add 8 to the last 3 digits 3. With the 3 -digit number: multiply hundreds digit by 4 , then add the last 2 digits	254,176: Thousands digit $=4$, so 176 $\begin{aligned} & (1 \times 4)+76=80 \\ & 80=5 \times 16 \\ & 693,408: \end{aligned}$ Thousands digit $=3$, so $408+8=416$ $\begin{aligned} & (4 \times 4)+16=32 \\ & 32=2 \times 16 \end{aligned}$
17	Subtract 5 times the last digit from the rest	$\begin{aligned} & \text { 221: } \\ & 22-(1 \times 5)=\mathbf{1 7} \end{aligned}$
18	Divisible by 2 and 9	35,406: Last digit = 2 (even), divisible by 2 and $3+5+4+0+6=18$, divisible by 9
19	Add twice the last digit to the rest	$\begin{aligned} & 437: \\ & 43+(7 \times 2)=57 \\ & 5+(7 \times 2)=\mathbf{1 9} \end{aligned}$
20	Divisible by 10 and the tens digit is even	360: Last digit $=\mathbf{0}$ and tens digit $=6$ is even
25	Last 2 digits are 25,50 , or 75	$\begin{aligned} & 895,438,675: \\ & \text { Last } 2 \text { digits }=\mathbf{7 5} \\ & 7,325: \\ & \text { Last } 2 \text { digits }=\mathbf{2 5} \end{aligned}$
50	Last 2 digits are 50 or 00	$\begin{aligned} & \text { 686,352,400: } \\ & \text { Last } 2 \text { digits }=\mathbf{0 0} \\ & \text { 327,950: } \\ & \text { Last } 2 \text { digits }=\mathbf{5 0} \end{aligned}$

