

Multiplying Square Roots

Objectives: 1. to multiply a monomial numerical radical expression by another monomial numerical radical expression

2. to multiply a monomial numerical radical expression by a binomial containing numerical radicals

Using the Product Property of Square Roots, we can multiply $\sqrt{2}\sqrt{3} = \sqrt{6}$ Since the number 6 does not contain any factor that is a perfect square other than "1," this is simplified.

If we multiply $\sqrt{3}\sqrt{6}$, we get $\sqrt{18}$, which must then be simplified because 18 contains the factor 9, which is a perfect square. Continuing,

$$\sqrt{3}\sqrt{6} = \sqrt{18}$$
$$= \sqrt{9}\sqrt{2}$$
$$= 3\sqrt{2}$$

Example 1: $\sqrt{5}\sqrt{5} = \sqrt{25}$ = 5 Also, keep in mind what a square root *is*. The square root of 5 is that number, which when multiplied by itself, yields 5. That is, $\sqrt{5} \cdot \sqrt{5} = 5$.

Example 2:
$$\sqrt{6}\sqrt{15} = \sqrt{90}$$

= $\sqrt{9}\sqrt{10}$
= $3\sqrt{10}$
Example 3: $\sqrt{7}\sqrt{28} = \sqrt{196}$

When we multiply a monomial times a polynomial, we distribute the monomial to each term in the polynomial. Therefore,

$$\sqrt{2}(\sqrt{3} + \sqrt{6}) = \sqrt{2}\sqrt{3} + \sqrt{2}\sqrt{6}$$
$$= \sqrt{6} + \sqrt{12}$$
$$= \sqrt{6} + \sqrt{4}\sqrt{3}$$
$$= \sqrt{6} + 2\sqrt{3}$$

=14

This is the simplified answer. Remember that you cannot add or subtract unlike radicals.

This instructional aid was prepared by the Tallahassee Community College Learning Commons. -

Example 4: $\sqrt{3}(\sqrt{21} + \sqrt{3}) = \sqrt{3}\sqrt{21} + \sqrt{3}\sqrt{3}$ $=\sqrt{63}+\sqrt{9}$ $=\sqrt{9}\sqrt{7}+\sqrt{9}$ $=3\sqrt{7}+3$ **Example 5:** $\sqrt{2}(\sqrt{2} - \sqrt{5}) = \sqrt{2}\sqrt{2} - \sqrt{2}\sqrt{5}$ $=\sqrt{4}-\sqrt{10}$ $=2-\sqrt{10}$ **Example 6:** $\sqrt{3}(\sqrt{27} - \sqrt{12}) = \sqrt{3}\sqrt{27} - \sqrt{3}\sqrt{12}$ $=\sqrt{81}-\sqrt{36}$ =9-6= 3

Exercises:

10.

Answers:

10.

-4

 $\sqrt{9}\sqrt{4}$ 1. 1. 6 2. $\sqrt{8}\sqrt{32}$ 2. 16 3. $\sqrt{6}\sqrt{10}$ $2\sqrt{15}$ 3. 4. $\sqrt{27}\sqrt{50}$ 4. $15\sqrt{6}$ 5. $\sqrt{15} + \sqrt{35}$ 5. $\sqrt{5}\left(\sqrt{3}+\sqrt{7}\right)$ 6. $\sqrt{7}\left(\sqrt{10} + \sqrt{21}\right)$ $6. \qquad \sqrt{70} + 7\sqrt{3}$ 7. $\sqrt{3}\left(\sqrt{24}-\sqrt{3}\right)$ 7. $6\sqrt{2}-3$ 8. $\sqrt{8}\left(\sqrt{6} + \sqrt{18}\right)$ 8. $4\sqrt{3} + 12$ 9. $\sqrt{5}\left(\sqrt{15}-\sqrt{10}\right)$ 9. $5\sqrt{3}-5\sqrt{2}$ $\sqrt{2}\left(\sqrt{8}-\sqrt{32}\right)$

This instructional aid was prepared by the Tallahassee Community College Learning Commons. -