Multiplying Square Roots

Objectives: 1. to multiply a monomial numerical radical expression by another monomial numerical radical expression
2. to multiply a monomial numerical radical expression by a binomial containing numerical radicals

Using the Product Property of Square Roots, we can multiply $\sqrt{2} \sqrt{3}=\sqrt{6}$
Since the number 6 does not contain any factor that is a perfect square other than " 1 ," this is simplified.

If we multiply $\sqrt{3} \sqrt{6}$, we get $\sqrt{18}$, which must then be simplified because 18 contains the factor 9 , which is a perfect square. Continuing,

$$
\begin{aligned}
\sqrt{3} \sqrt{6} & =\sqrt{18} \\
& =\sqrt{9} \sqrt{2} \\
& =3 \sqrt{2}
\end{aligned}
$$

Example 1: $\quad \sqrt{5} \sqrt{5}=\sqrt{25}$

$$
=5
$$

Also, keep in mind what a square root is. The square root of 5 is that number, which when multiplied by itself, yields 5 . That is, $\sqrt{5} \cdot \sqrt{5}=5$.

Example 2: $\quad \sqrt{6} \sqrt{15}=\sqrt{90}$

$$
\begin{aligned}
& =\sqrt{9} \sqrt{10} \\
& =3 \sqrt{10}
\end{aligned}
$$

Example 3: $\quad \sqrt{7} \sqrt{28}=\sqrt{196}$

$$
=14
$$

When we multiply a monomial times a polynomial, we distribute the monomial to each term in the polynomial. Therefore,

$$
\begin{aligned}
\sqrt{2}(\sqrt{3}+\sqrt{6}) & =\sqrt{2} \sqrt{3}+\sqrt{2} \sqrt{6} \\
& =\sqrt{6}+\sqrt{12} \\
& =\sqrt{6}+\sqrt{4} \sqrt{3} \\
& =\sqrt{6}+2 \sqrt{3}
\end{aligned}
$$

This is the simplified answer. Remember that you cannot add or subtract unlike radicals.

Example 4: $\quad \sqrt{3}(\sqrt{21}+\sqrt{3})=\sqrt{3} \sqrt{21}+\sqrt{3} \sqrt{3}$

$$
\begin{aligned}
& =\sqrt{63}+\sqrt{9} \\
& =\sqrt{9} \sqrt{7}+\sqrt{9} \\
& =3 \sqrt{7}+3
\end{aligned}
$$

Example 5: $\quad \sqrt{2}(\sqrt{2}-\sqrt{5})=\sqrt{2} \sqrt{2}-\sqrt{2} \sqrt{5}$

$$
\begin{aligned}
& =\sqrt{4}-\sqrt{10} \\
& =2-\sqrt{10}
\end{aligned}
$$

Example 6: $\quad \sqrt{3}(\sqrt{27}-\sqrt{12})=\sqrt{3} \sqrt{27}-\sqrt{3} \sqrt{12}$

$$
\begin{aligned}
& =\sqrt{81}-\sqrt{36} \\
& =9-6 \\
& =3
\end{aligned}
$$

Exercises:

1. $\sqrt{9} \sqrt{4}$
2. $\sqrt{8} \sqrt{32}$
3. $\sqrt{6} \sqrt{10}$
4. $\sqrt{27} \sqrt{50}$
5. $\sqrt{5}(\sqrt{3}+\sqrt{7})$
6. $\sqrt{7}(\sqrt{10}+\sqrt{21})$
7. $\sqrt{3}(\sqrt{24}-\sqrt{3})$
8. $\sqrt{8}(\sqrt{6}+\sqrt{18})$
9. $\sqrt{5}(\sqrt{15}-\sqrt{10})$
10. $\sqrt{2}(\sqrt{8}-\sqrt{32})$

This instructional aid was prepared by the Tallahassee Community College Learning Commons. -

