Texas Instruments Calculator Shortcuts

STA 2023 \& 2122

Descriptive Statistics: (Mean, Standard Deviation, Minimum, Q1, Median, Q3, Maximum)

- Insert Data in calculator STAT > Edit
- Then: STAT > CALC > 1: 1-Vars Stat
- To clear a list: STAT > Edit > go up to the list name (L1, L2, L3. . .) > CLEAR > ENTER
- Restore a missing list name: STAT > Edit > go up > $2^{\text {nd }}$ DEL > type the missing name > ENTER

Linear Regression:

- Correlation coefficient (one-time set up): $2^{\text {nd }} 0>$ scroll down to DiagnosticOn $>$ ENTER $>$ ENTER
- Insert values of X into List1 and values of Y into List2: STAT > Edit
- Then: STAT $>$ CALC >4 : LinReg $(\mathrm{ax}+\mathrm{b})>2^{\text {nd }}>1>$ Comma $>2^{\text {nd }}>2>$ ENTER
- Or: \quad STAT $>$ CALC >8 : LinReg $(a+b x)>2^{\text {nd }}>1>$ Comma $>2^{\text {nd }}>2>$ ENTER

Intervals:

- STAT > TESTS > 7: Z-Interval
- STAT > TESTS > 8: T-Interval

Hypothesis Test:

- STAT > TESTS > 1: Z-Test
- STAT > TESTS > 2: T-Test
- STAT > TESTS > A: 1-PropZInterval
- STAT > TESTS > 4: 2-SampTTest
- STAT > TESTS > 5: 1propZ-Test

Distributions:

- $2^{\text {nd }}>$ VARS >2 : normalcdf (Left Bound, Right Bound, Mean, Standard Deviation)
- $2^{\text {nd }}>$ VARS >3 : invNorm (Area to the Left, Mean, Standard Deviation)
- $2^{\text {nd }}>$ VARS >5 : tcdf (Left Bound, Right Bound, Degrees of Freedom)
- $2^{\text {nd }}>$ VARS >0 : binompdf (number of trials, probability of success, number of successes)
- $2^{\text {nd }}>$ VARS $>$ A: binomcdf (number of trials, probability of success, number of successes)

Formula Sheet

STA 2023 \& 2122

Z-score for Population:
$Z=\frac{X-\mu}{\sigma}$
Z-score for Sample

Regression Equations:
Slope: $b_{1}=r \frac{S_{y}}{S_{x}} \quad y$-intercept: $\quad b_{0}=\bar{y}-b_{1} \bar{x} \quad$ residual $=y-\hat{y}$
Binomial Distribution:
Mean: $\mu=n p \quad$ Standard Deviation: $\sigma=\sqrt{n p(1-p)}$
Sampling Distribution of Sample Mean (\bar{X}) :
Mean: $\mu_{\bar{X}}=\mu$
Standard Deviation: $\quad \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}$
Sampling Distribution of Sample Proportion (\hat{p}) :
$\hat{p}=\frac{x}{n} \quad \mu_{\hat{p}}=p \quad \sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$
Z-scores for Sampling Distribution:

For mean:
$Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}$
Confidence Intervals for Mean:
C.I. $=\bar{X} \pm Z_{C} \frac{\sigma}{\sqrt{n}}$
C.I. $=\bar{X} \pm t_{C} \frac{S}{\sqrt{n}}$

Confidence Interval for Proportion:
$C . I .=\hat{p} \pm Z_{C} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
Sample Size:
For Mean:
$n=\frac{z_{c}{ }^{2} \sigma^{2}}{M^{2}}$
For Proportion:
$n=\frac{p(1-p) Z_{c}{ }^{2}}{M^{2}}$

