The following tables are binomial probability distributions for which $\mathbf{n}=\mathbf{6}$ and $\mathbf{p}=\mathbf{0 . 6 5}$ The desired probabilities are highlighted.

PDF

Find the probability of exactly $\mathbf{2}$ favorable outcomes.

$\mathbf{P}(\mathrm{x}=2)=\operatorname{binompdf}(6,0.65,2)=0.0951021094$							
\mathbf{x}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{P}(\mathbf{x})$.0018	.0205	.0951	.2355	.3280	.2437	.0754

CDF

Find the probability of less than 3 favorable outcomes.
Find the probability of at most 2 favorable outcomes. Both of these mean two or less.
$\mathrm{P}(\mathrm{x}<3)=\mathrm{P}(\mathrm{x} \# 2)=\mathrm{P}(\mathrm{x}=0)+\mathrm{P}(\mathrm{x}=1)+\mathrm{P}(\mathrm{x}=2)=$ binomcdf $(6,0.65,2)=0.1174239063$

\mathbf{x}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{P}(\mathbf{x})$	$\mathbf{. 0 0 1 8}$	$\mathbf{. 0 2 0 5}$	$\mathbf{. 0 9 5 1}$	$\mathbf{. 2 3 5 5}$	$\mathbf{. 3 2 8 0}$.2437	$\mathbf{. 0 7 5 4}$

CDF

Find the probability of more than 2 favorable outcomes. Find the probability of at least $\mathbf{3}$ favorable outcomes.

Both of these are the complement of two or less.

$$
\mathrm{P}(\mathrm{x}>2)=\mathrm{P}(\mathrm{x} \$ 3)=\mathbf{1}-\mathrm{P}(\mathrm{x} \# 2)=\mathbf{1}-\operatorname{binomcdf}(6,0.65,2)=0.8825760937
$$

\mathbf{x}	0	1	2	3	4	5	6
$\mathbf{P (x)}$.0018	.0205	.0951	.2355	.3280	.2437	.0754

$$
\begin{aligned}
& \text { * Remember that the cumulative sum of ALL probabilities is ONE : } \\
& \mathrm{P}(\mathrm{x}=0)+\mathrm{P}(\mathrm{x}=1)+\mathrm{P}(\mathrm{x}=2)+\mathrm{P}(\mathrm{x}=3)+\mathrm{P}(\mathrm{x}=4)+\mathrm{P}(\mathrm{x}=5)+\mathrm{P}(\mathrm{x}=6)=\mathbf{1}
\end{aligned}
$$

