T MEAARNiNG comvions CONFIDENCE INTERVAL FOR A PROPORTION

A confidence interval is an interval of plausible values for a population proportion. It is constructed so that we can state a chosen degree of confidence that the actual value of the parameter will be between the lower and upper endpoints of the interval.

STEP 1. Check for conditions of normality.

- a random sample
- $\mathrm{n}(\mathrm{P})>1 \mathrm{O}$ and $\mathrm{n}(1-\mathrm{P})>1 \mathrm{O}$
- $\mathrm{N}>1 \mathrm{On}$

STEP 2. Enter data or summary statistics.

STAT > TESTS A: 1-PropZInt
Inpt: Data Stats
x: number of "successes" in the sample
n: sample size
C-Level: degree of confidence

Output screen

1-PropZInt

(lower endpoint, upper endpoint)
$\mathbf{P}=$ sample proportion
$\mathbf{n}=$ sample size
STEP 3. Interpret the confidence interval.
We are \qquad \% confident that the population proportion is between \qquad and \qquad .

To find margin of error with calculator output
Margin of Error $=\frac{\text { upper endpoint-lower endpoint }}{2}$ CONFIDENCE INTERVAL MARGIN OF ERROR

STEP 1. Find the $\mathbf{9 0 \%} \mathbf{z}$-critical value (z_{c}).
$2^{\text {nd }}$ VARS (DISTR) 3: invNorm area: 1.9O/2
$\mu: \mathbf{O}$
ð: 1
invNorm(1.9O/2,O,1) $=\mathbf{1 . 6 4 4 8 5 3 6 2 6}$
STEP 2. Use 1.645 for z_{c} and n and \widehat{p} to calculate the margin of error.

$$
\widehat{\boldsymbol{p}}=\frac{x}{n} \text { and M.E. }=z_{c} * \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}
$$

confidence interval $=\widehat{\boldsymbol{p}} \pm$ M. E.
Note: Increasing the level of confidence widens the interval giving a larger margin of error. Conversely, increasing the sample size decreases the margin of error, narrowing the interval.

Another look at the 90\% Confidence Interval

The vertical line in the middle of the figure above denotes the unknown population proportion. The horizontal segments represent twenty 90% confidence intervals. The dot in the middle of each segment marks the sample proportion. Note that 18 of the 20 intervals (i.e., 90%) contain the true population proportion.

