

HYPOTHESIS TESTING BY CALCULATOR

Step 1 – Identify the claim to be tested; use the correct symbols to write the claim symbolically based on which key words are used

- **p**: "proportion", "ratio", "percent"
- µ: "mean", "average"
- =: "has not changed", "is the same as"
- **≠**: "has changed", "is different from"
- >: "increased", "more than", "slower"
- <: "decreased", "less than", "faster"

Step 2 – Write the Null and the Alt. Hypotheses
H₀: the null states the <u>equality</u>
H_A: the alternative states the <u>inequality</u>

Step 3 – Decide which test to use, input data, choose (highlight) the inequality in **H**_A

1: Z-Test (Test for a mean; ð known)

Inpt: DataStats μ_0 : hypothesized population mean δ : population standard deviation \tilde{c} : sample meann: sample size μ : $\neq \mu_0$ $\langle \mu_0 \rangle \mu_0$

OUTPUT Z-Test

µ: alternative hypothesis
z= test statistic
p= p-value
~= sample mean
n= sample size

HYPOTHESIS TESTING (continued)

2: T-Test (Test for a mean; ð unknown)

Inpt: DataStats μ_0 : hypothesized population mean $\ddot{}$: sample meanSx: sample standard deviationn: sample size $\mu: \neq \mu_0$ $\langle \mu_0 \rangle \mu_0$

<u>OUTPUT</u>

T-Test

µ: alternative hypothesis
t= test statistic
p= p-value
~= sample mean
Sx: sample standard deviation
n= sample size

Test for a proportion (percentage)

5: 1-PropZTest

Inpt: Data

p₀: hypothesized population proportion**x**: number of "successes" in the sample**n**: sample size

<u>OUTPUT</u>

1-PropZTest

prop: alternative hypothesis
z= test statistic
p= p-value
P= sample proportion
n= sample size

Step 4 – Compare the p-value with \ddot{y} and decide whether or not to reject H_0

"WHEN THE 'P' IS LOW, REJECT H.O." Step 5 – Write conclusion in context of the claim