

Statistics formulas for STA 2023 and STA 2122

Z-Score for Sample Values and Population Values

$$Z = \frac{x - \bar{x}}{s} \qquad \qquad Z = \frac{X - \mu}{\sigma}$$

Standard Deviation for Sample Values and Population Values

Sample Standard Deviation, s =
$$\sqrt{\frac{\Sigma(x-\bar{x})^2}{n-1}}$$
 Population Standard Deviation, $\sigma = \sqrt{\frac{\sum(x-\mu)^2}{N}}$

Sampling Distribution for a Sample Proportion

$\hat{p} = \frac{x}{n}$	$\mu_{\hat{p}}=p$	$\sigma_{\hat{p}=}\sqrt{\frac{p(1-p)}{n}}$	$Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$
Central Limit Theorem Conditions $(\hat{p} \sim normal)$	1. SRS	 np ≥ 10; and n(1- p) ≥ 10 	3. N≥10n

Sampling Distribution for a Sample Mean

$\bar{x} = \frac{\Sigma x}{n}$	$\mu_{ar{x}}=\mu$	$\sigma_{ar{x}}=rac{\sigma}{\sqrt{n}}$	$Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$
Central Limit Theorem Conditions ($\bar{x} \sim normal$)	1. SRS	2. n <u>></u> 30 or x ~ normal	

Confidence Intervals and Test Statistics for Hypothesis Testing

Cl for μ, σ known	Cl for μ, σ unknown	Cl for p
C.I. = $\bar{x} \pm Z \frac{\sigma}{\sqrt{n}}$	C.I. = $\bar{x} \pm t \frac{s}{\sqrt{n}}$	C.I. = $\hat{p} \pm Z_c \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
HT for μ, σ known	HT for μ, σ unknown	HT for p
$Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$	$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$	$Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$

Confidence Interval Critical Values of Z

Confidence	Z _c	Confidence	Zc
90%	1.645	98%	2.33
95%	1.96	99%	2.576 or 2.58

Regression line equation y = ax + b, a = slope of the line, b = the y-intercept, residual= $y - \hat{y}$; r = correlation coefficient (-1 < r < 1), $r^2 = coefficient of determination$

Binomial Distribution: $\mu = np$; $\sigma = \sqrt{np(1-p)}$;

This instructional aid was prepared by the Tallahassee Community College Learning Commons

Discrete Probability Distribution: $\mu = \Sigma[X \cdot P(X)]; \sigma = \sqrt{\sum[(x-\mu)^2 \bullet p(x)]}$

Probability: nCr = $\frac{n!}{r!(n-r)!}$; nPr = $\frac{n!}{(n-r)!}$; P(AUB) = P(A) + P(B) - P(A \cap B); P(A|B) = $\frac{P(A \cap B)}{P(B)}$; P(A) + P(A^C) = 1

Texas Instruments Calculator Shortcuts and Formulas

Descriptive Statistics: (Mean, Standard Deviation, Minimum, Q1, Median, Maximum):

- insert data in calculator STAT \rightarrow Edit
- Then: STAT \rightarrow CALC \rightarrow 1: 1-Vars Stat
- To clear a list: STAT \rightarrow Edit \rightarrow go up to the list name (L1, L2, L3...)--> CLEAR \rightarrow Enter
- Restore missing list name: STAT \rightarrow Edit \rightarrow go up \rightarrow 2nd Del \rightarrow type the name \rightarrow enter

Linear Regression:

- Correlation coefficient (one-time set up): $2^{nd} 0 \rightarrow DiagnosticOn \rightarrow Enter \rightarrow Enter$
- Insert values of X into List1 and values of Y into List2 \rightarrow STAT \rightarrow Edit
- Then: STAT \rightarrow CALC \rightarrow 4: LinReg(ax + b) \rightarrow 2nd \rightarrow 1 \rightarrow comma \rightarrow 2nd \rightarrow 2 \rightarrow enter
- Or: STAT \rightarrow CALC \rightarrow 8: linReg (a + bx) \rightarrow 2nd \rightarrow comma \rightarrow 2nd \rightarrow 2 \rightarrow enter

Intervals:

- Stat → TESTS → 1: Z-Test
- Stat → TESTS → 2:T:Test
- STAT→ TESTS→ 4:2-SampT-Test Hypothesis Test:
 - STAT \rightarrow TESTS \rightarrow 1: Z-test
 - STAT \rightarrow TESTS \rightarrow 2: T-Test
 - STAT → TESTS → 4: 2-SampT-Test
 - STAT \rightarrow TESTS \rightarrow 5: 1propZ-Test

Distributions:

- $2^{nd} \rightarrow VARS \rightarrow 2$: normalcdf (left bound, right bound, Mean, Standard Deviation)
- $2^{nd} \rightarrow VARS \rightarrow 3$: invNorm (area to the left, Mean, Standard Deviation)
- $2^{nd} \rightarrow VARS \rightarrow 5$: tcdf (left bound, right bound, degrees of freedom)
- 2nd→ VARS→ 0: binomialpdf(number of trials, probability of success, number of successes)
- $2^{nd} \rightarrow VARS \rightarrow A$:Binomcdf(number of trials, probability of success, number of successes)

- STAT \rightarrow TESTS \rightarrow 5: 1propZ-Test
- <u>STAT</u> \rightarrow <u>TESTS</u> \rightarrow <u>A: 1propZ-Interval</u>