Finding Angular and Linear Speeds by Dimensional Analysis

i.e. Unit Conversion

$\begin{gathered} \text { Definitions of Symbols } \\ \mathrm{C}=\text { circumference } \\ \mathrm{r}=\text { radius } \\ \mathrm{d}=\text { diameter }(\mathrm{d}=2 \mathrm{r}) \\ \mathrm{S}=\operatorname{arc} \text { length } \\ \Theta=\text { central angle in radians } \\ \pi=\text { approximately } 3.14 \\ \text { Formulas } \\ \mathrm{C}=2 \pi \mathrm{r}=\pi \mathrm{d} \text { and } \Theta=\frac{\mathrm{s}}{\mathrm{r}} \end{gathered}$		Relationships 1 revolution $=1$ turn around circle (definition)1 revolution $=2 \pi$ radians(angular measurement)1 revolution $=2 \pi \mathrm{r}$(linear measurement, i.e. distance)
NOTES:	when $\mathrm{S}=\mathrm{r}, \Theta=1$ radian	when $\mathrm{s}=\mathrm{C}, \Theta=2 \pi$ radians

EXAMPLES:
(Note CANCELLATION OF UNITS! Un-cancelled units are boldfaced.)

1. A phonograph record has a radius of 3 inches and revolves at 45 RPM. Find the linear speed of the outside edge of the record.

Solution: Use the fact that 1 revolution $=2$ pir:
$\left(\frac{45 \text { revolutions }}{1 \text { minute }}\right)=\left(\frac{45 \text { revolutions }}{1 \text { minute }}\right) \cdot\left(\frac{2 \pi(3) \text { inches }}{1 \text { Tevelution }}\right)=\left(848.2 \frac{\text { inches }}{\text { minute }}\right)$
2. A car is traveling 60 mph . The diameter of the wheels is 3 ft .
a. Find the number of revolutions per minute the wheels are rotating.
$\begin{aligned} & \text { Strategy: We need to convert } \frac{\text { mile }}{\text { hour }} \rightarrow \frac{\text { feet }}{\text { hour }} \rightarrow \frac{\text { feet }}{\text { minute }} \rightarrow \frac{\text { revolutions }}{\text { minute }} \\ & \text { so, we need three conversion ratios. }\end{aligned}$
$\left(60 \frac{\text { miles }}{\text { hour }}\right)=\left(60 \frac{\text { imites }}{\text { hour }}\right) \cdot\left(\frac{5280 \text { feet }}{1 \text { mite. }}\right) \quad$ (since 1 mile $=5280$ feet)
$\left(60 \frac{\text { mintes }}{\text { hotur }}\right) \cdot\left(\frac{5280 \text { feet }}{1 \text { mite- }}\right) \cdot\left(\frac{1 \text { hour }}{60 \text { minutes }}\right) \quad$ (since 1 hour $=60$ minutes)
$\left(60 \frac{\text { mites }}{\text { houtr }}\right) \cdot\left(\frac{5280 \text { feet }}{1 \text { mite }}\right) \cdot\left(\frac{1 \text { hour }}{60 \text { minutes }}\right) \cdot\left(\frac{1 \text { revolution }}{2 \pi(1.5) \text { feet }}\right)=\left(560.2 \frac{\text { revolutions }}{\text { minute }}\right)$
b. What's the angular speed of the wheels in radians per minute?
$\left(560.2 \frac{\text { revolutions }}{\text { minute }}\right) \cdot\left(\frac{2 \pi \text { radians }}{1 \text { revolution }}\right)=\left(3519.8 \frac{\text { radians }}{\text { minute }}\right)$ (since $1 \mathrm{rev} .=2 \pi$ radians)

