Functions - Finding their Domain and Range.
Domain deals with the acceptable values for the x variable and Range deals with the subsequent values for the y variable. Below are some examples that show some of the various types of problems most students encounter. Mainly two things limit your domain: a fraction, and an even radical. The range is the easiest to determine when looking at a graph of the function. Quadratic Functions

Hint: for the range find the lowest or highest point.

1. $y=-x^{2}+3 x+2$

Domain: no limits : $(-\infty,+\infty)$
Range: The y values have a peak but no bottom so the range is $(-\infty, 17 / 4]$

Rational Functions

Hint: the denominator cannot be zero; thus we set the bottom equal to 0 and solve for x.
2. $y=\frac{1}{x+2}$

Domain: $(-\infty,-2) \cup(-2,+\infty)$
Range: $\quad(-\infty, 0) \cup(0,+\infty)$

Even indexed roots
Hint: these roots have to be greater than or equal to zero if they are not in the denominator.

Domain: [4, +)
Range: since y never gets
less than $0,[0,+\infty)$

Odd indexed roots No values of x will give undefined values, nor are any values of y not used.
This hold true for any odd index.
4. $y=\sqrt[3]{x+3}$

Testing whether or not a relation is a function.
A function is a relation where each x value has only one y value. The vertical line test can be used to determine if the graph or a relation is a function. If a vertical line passed through more than one point anywhere on the graph, then it is not a function. See the examples below:

NOT a function: fails vertical line test

IS a function: passes vertical line test

Test for a Function
An equation is not a function if there exists:

- A plus or minus symbol on a x expression or
- Even powers of y or
- Y variable expression inside absolute value symbols or Inequality symbols.

Examples of how each of these 4 cases fail the vertical line test

(i) $y= \pm \sqrt{x+2}$

(ii) $x=y^{2}$

(iii) $x=|y|$

(iv) $y \geq x$

In all other cases the equation is a function.

