Logarithmic and Exponential Equations - Practice (and solutions)
Logarithmic equations can sometimes be solved by exploiting the one-to-one property of logarithmic functions. That is, (this=that) $\Leftrightarrow \log ($ this $)=\log ($ that $)$.
For example, if we have $\log _{2}(4 x-3)=\log _{2} 13$ then we can solve this by using the one-to-one property.

$$
\begin{gathered}
4 x-3=13 \\
4 x=16 \\
x=4
\end{gathered}
$$

Other exponential equations can be solved using logarithms. Using the one-to-one property, if we have this $=$ that then, $\log ($ this $)=\log ($ that $)$

For example,

$$
\begin{gathered}
2^{x}=7 \\
\log 2^{x}=\log 7 \\
x \log 2=\log 7 \\
x=\frac{\log 7}{\log 2}
\end{gathered}
$$

Solve each of the following equations.

1. $\log _{a}(x+4)-\log _{a}(x+2)=\log _{a} x$
2. $3^{2 x-5}=13$
3. $\ln (y+2)=\ln (y-7)+\ln 4$
4. $e^{2-x}=12$
5. $\ln (x+1)=\ln (x-4)$
6. $10 e^{3 x-7}=5$
7. $\log q^{2}=1$
8. $\ln x-\ln (x+1)=\ln 5$
9. $4^{x}=12$
10. $\log _{4}(x+3)+\log _{4}(x-3)=1$

Answers:

1) $x=\frac{-1+\sqrt{17}}{2}$
2) $y=10$
3) \emptyset
4) $q=\sqrt{10}$
5) $x=\frac{\log 12}{\log 4}$
6) $x=\frac{1}{2}\left(\frac{\log 13}{\log 3}+5\right)=\frac{\log 13}{\log 9}+\frac{5}{2}$
7) $x=2-\ln 12$
8) $x=\frac{7+\ln \frac{1}{2}}{3}=\frac{7-\ln 2}{3}$
9) \emptyset

$$
\text { 10) } x= \pm \sqrt{13}
$$

