

Logarithmic and Exponential Equations - Practice (and solutions)

Logarithmic equations can sometimes be solved by exploiting the one-to-one property of logarithmic functions. That is, $(this=that) \Leftrightarrow \log(this) = \log(that)$.

For example, if we have $\log_2(4x-3) = \log_2 13$ then we can solve this by using the one-to-one property.

$$4x - 3 = 13$$
$$4x = 16$$
$$x = 4$$

Other exponential equations can be solved using logarithms. Using the oneto-one property, if we have this = that then, log(this) = log(that)

For example,

$$2^{x} = 7$$
$$\log 2^{x} = \log 7$$
$$x \log 2 = \log 7$$
$$x = \frac{\log 7}{\log 2}$$

Solve each of the following equations.

1.
$$\log_a(x+4) - \log_a(x+2) = \log_a x$$
 6. $3^{2x-5} = 13$

6.
$$3^{2x-5} = 13$$

2.
$$ln(y + 2) = ln(y - 7) + ln 4$$

7.
$$e^{2-x} = 12$$

3.
$$\ln(x + 1) = \ln(x - 4)$$

8.
$$10e^{3x-7} = 5$$

$$4. \log q^2 = 1$$

9.
$$\ln x - \ln(x+1) = \ln 5$$

5.
$$4^x = 12$$

10.
$$\log_4(x+3) + \log_4(x-3) = 1$$

Answers:

1)
$$x = \frac{-1+\sqrt{17}}{2}$$

2)
$$y = 10$$

4)
$$q = \sqrt{10}$$

$$5) x = \frac{\log 12}{\log 4}$$

6)
$$x = \frac{1}{2} \left(\frac{\log 13}{\log 3} + 5 \right) = \frac{\log 13}{\log 9} + \frac{5}{2}$$

7)
$$x = 2 - \ln 12$$

8)
$$x = \frac{7 + \ln \frac{1}{2}}{3} = \frac{7 - \ln 2}{3}$$

10)
$$x = \pm \sqrt{13}$$