MAC 1114 - Trigonometry Basic Graphs

Basic Trigonometric Graphs:

Standard Forms

$y = a \sin k(x - b) + c$	Amplitude= a	Period = $\frac{2\pi}{l}$, k > 0	Phase shift: b	Vertical shift: c
$y = a \cos k(x - b) + c$		ĸ		
$y = a \csc k(x - b) + c$	Not applicable	Period = $\frac{2\pi}{l}$, k > 0	Phase shift: b	Vertical shift: c
$y = a \sec k(x - b) + c$		k '		
y = a tan k(x - b) + c	Not applicable	Period = $\frac{\pi}{k}$, k > 0	Phase shift: b	Vertical shift: c
$y = a \cot k(x - b) + c$		K.		

Examples (these show one period for each example)

1. $y = 3\cos(2x + \frac{2\pi}{3})$: put it into the standard form by factoring out the 2 that is with the x. This gives: $y = 3\cos 2(x + \frac{\pi}{3})$: Amplitude $\Rightarrow 3$,

Period $\Rightarrow \frac{2\pi}{2} = \pi$ so would divide graph into $0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}$ and π .

Phase shift $\rightarrow \frac{-\pi}{3}$ (to the left)

5 point method: (take the unshifted graph and adjust to get new points)

Starting point: unshifted (0,3) \rightarrow (0 $-\frac{\pi}{3}$,3) Second point: unshifted $(\frac{\pi}{4},0) \rightarrow (\frac{\pi}{4} - \frac{\pi}{3},0)$ Third point: unshifted $(\frac{\pi}{2},-3) \rightarrow (\frac{\pi}{2} - \frac{\pi}{3},-3)$ Fourth point: unshifted $(\frac{3\pi}{4},0) \rightarrow (\frac{3\pi}{4} - \frac{\pi}{3},0)$

End of period: unshifted $(\pi, 3) \rightarrow (\pi - \frac{\pi}{3}, 3)$

3	
angle	value
$\frac{-\pi}{3}$	3
$-\pi$	0
12	
π	-3
6	
5π	0
12	
2π	3
3	

2. $y = 2 \csc(2x + \frac{\pi}{2})$

put it into the standard form by factoring out the 2 that is with the x. This gives: $y = 2 \csc 2 \left(x + \frac{\pi}{4}\right)$; period = $\frac{2\pi}{2} = \pi$ so would divide graph into $0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}$ and π . Phase shift $\rightarrow \frac{-\pi}{4}$ (to the left)

5 point method: (take the unshifted graph and adjust to get new points)

Starting point: unshifted (0,1) \rightarrow (0 $-\frac{\pi}{4}$, 1)

Third point: unshifted $\left(\frac{\pi}{2}, -1\right) \rightarrow \left(\frac{\pi}{2} - \frac{\dot{\pi}}{4}, 0\right)$

End of period: unshifted $(\pi, 1) \rightarrow (\pi - \frac{\pi}{4}, 1)$

S	ond point: unshifted $(\frac{\pi}{4}, 0) \rightarrow (\frac{\pi}{4} - \frac{\pi}{4}, 0)$
F	ourth point: unshifted $(\frac{3\pi}{2},0) \rightarrow (\frac{3\pi}{2}-\frac{\pi}{2},0)$

angle	value
$\frac{-\pi}{}$	asymptote
4	
0	2
$\frac{\pi}{}$	asymptote
$\overline{4}$	
π	-2
2	
3π	asymptote
$\frac{3\pi}{4}$	asymptote
4	

$3. \quad y = \tan(x - \frac{\pi}{4})$

Period: no change since $k = 1 \rightarrow \pi$ so divide the graph into increments of $\frac{\pi}{4}$ like normal. Phase shift $\rightarrow \frac{\pi}{4}$

5 point method: (take the unshifted graph and adjust to get new points)

Starting point: unshifted $(\frac{-\pi}{2}, -\infty) \rightarrow (\frac{-\pi}{2} + \frac{\pi}{4}, -\infty)$ Second point: unshifted $(-\frac{\pi}{4}, -1) \rightarrow (-\frac{\pi}{4} + \frac{\pi}{4}, -1)$ Third point: unshifted $(0, 0) \rightarrow (0 + \frac{\pi}{4}, 0)$ Fourth point: unshifted $(\frac{\pi}{4}, 1) \rightarrow (\frac{\pi}{4} + \frac{\pi}{4}, 1)$ End of period: unshifted $(\frac{\pi}{2}, +\infty) \rightarrow (\frac{\pi}{2} + \frac{\pi}{4}, +\infty)$

angle	value
$\frac{-\pi}{4}$	-8
0	-1
$\frac{\pi}{4}$	0
$\frac{\pi}{2}$	1
$\frac{3\pi}{4}$	+∞

This instructional aid was prepared by the Tallahassee Community College Learning Commons.