Basic Trigonometric Graphs:

$y=\cos x$			$y=\sin x$	$y=\tan x$
$y=\sec x$			$y=\csc x$	$y=\cot x$
		(\%)		

Standard Forms

$y=a \sin k(x-b)+c$ $y=a \cos k(x-b)+c$	Amplitude $=a$	Period $=\frac{2 \pi}{k}, k>0$	Phase shift: b	Vertical shift: c
$y=a \csc k(x-b)+c$ $y=a \sec k(x-b)+c$	Not applicable	Period $=\frac{2 \pi}{k}, k>0$	Phase shift: b	Vertical shift: c
$y=a \tan k(x-b)+c$ $y=a \cot k(x-b)+c$	Not applicable	Period $=\frac{\pi}{k^{\prime}}, k>0$	Phase shift: b	Vertical shift: c

Examples (these show one period for each example)

1. $y=3 \cos \left(2 x+\frac{2 \pi}{3}\right)$: put it into the standard form by factoring out the 2 that is with the x. This gives:
$y=3 \cos 2\left(x+\frac{\pi}{3}\right): \quad$ Amplitude $\rightarrow 3$,
Period $\rightarrow \frac{2 \pi}{2}=\pi$ so would divide graph into $0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}$ and π.
Phase shift $\rightarrow \frac{-\pi}{3}$ (to the left)

5 point method: (take the unshifted graph and adjust to get new points)

Starting point: unshifted $(0,3) \rightarrow\left(0-\frac{\pi}{3}, 3\right) \quad$ Second point: unshifted $\left(\frac{\pi}{4}, 0\right) \rightarrow\left(\frac{\pi}{4}-\frac{\pi}{3}, 0\right)$
Third point: unshifted $\left(\frac{\pi}{2},-3\right) \rightarrow\left(\frac{\pi}{2}-\frac{\pi}{3},-3\right) \quad$ Fourth point: unshifted $\left(\frac{3 \pi}{4}, 0\right) \rightarrow\left(\frac{3 \pi}{4}-\frac{\pi}{3}, 0\right)$
End of period: unshifted $(\pi, 3) \rightarrow\left(\pi-\frac{\pi}{3}, 3\right)$

angle	value
$\frac{-\pi}{3}$	3
$\frac{-\pi}{12}$	0
$\frac{\pi}{6}$	-3
$\frac{5 \pi}{12}$	0
$\frac{2 \pi}{3}$	3

This instructional aid was prepared by the Tallahassee Community College Learning Commons.
2. $y=2 \csc \left(2 x+\frac{\pi}{2}\right)$
put it into the standard form by factoring out the 2 that is with the x . This gives:
$y=2 \csc 2\left(x+\frac{\pi}{4}\right)$; period $=\frac{2 \pi}{2}=\pi$ so would divide graph into $0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}$ and π.
Phase shift $\rightarrow \frac{-\pi}{4}$ (to the left)

5 point method: (take the unshifted graph and adjust to get new points)

Starting point: unshifted $(0,1) \rightarrow\left(0-\frac{\pi}{4}, 1\right)$
Second point: unshifted $\left(\frac{\pi}{4}, 0\right) \rightarrow\left(\frac{\pi}{4}-\frac{\pi}{4}, 0\right)$
Third point: unshifted $\left(\frac{\pi}{2},-1\right) \rightarrow\left(\frac{\pi}{2}-\frac{\pi}{4}, 0\right)$
Fourth point: unshifted $\left(\frac{3 \pi}{4}, 0\right) \rightarrow\left(\frac{3 \pi}{4}-\frac{\pi}{4}, 0\right)$
End of period: unshifted $(\pi, 1) \rightarrow\left(\pi-\frac{\pi}{4}, 1\right)$

angle	value
$\frac{-\pi}{4}$	asymptote
0	2
$\frac{\pi}{4}$	asymptote
$\frac{\pi}{2}$	-2
$\frac{3 \pi}{4}$	asymptote

3. $y=\tan \left(x-\frac{\pi}{4}\right)$

Period: no change since $\mathrm{k}=1 \rightarrow \pi$ so divide the graph into increments of $\frac{\pi}{4}$ like normal. Phase shift $\rightarrow \frac{\pi}{4}$

5 point method: (take the unshifted graph and adjust to get new points)

Starting point: unshifted $\left(\frac{-\pi}{2},-\infty\right) \rightarrow\left(\frac{-\pi}{2}+\frac{\pi}{4},-\infty\right)$ Second point: unshifted $\left(-\frac{\pi}{4},-1\right) \rightarrow\left(-\frac{\pi}{4}+\frac{\pi}{4},-1\right)$
Third point: unshifted $(0,0) \rightarrow\left(0+\frac{\pi}{4}, 0\right) \quad$ Fourth point: unshifted $\left(\frac{\pi}{4}, 1\right) \rightarrow\left(\frac{\pi}{4}+\frac{\pi}{4}, 1\right)$
End of period: unshifted $\left(\frac{\pi}{2},+\infty\right) \rightarrow\left(\frac{\pi}{2}+\frac{\pi}{4},+\infty\right)$

angle	value
$\frac{-\pi}{4}$	$-\infty$
0	-1
$\frac{\pi}{4}$	0
$\frac{\pi}{2}$	1
$\frac{3 \pi}{4}$	$+\infty$

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

