

Polar and Rectangular Coordinate Conversions

Polar Coordinate System – Any ordered pair written in the form of (r, θ) where r is the r radius from the Origin point O to a fixed point P and θ is the angle between the Polar Axis and the segment \overline{OP} .

Rectangular Coordinate System – Any ordered pair that can be written in the form of (x, y) where x is the horizontal component and y is the vertical component of the point.

 $x = r \cos \theta$ and $y = r \sin \theta$

Converting from Polar to Rectangular Coordinates:

Example: Find the Rectangular Coordinates for the point that has Polar Coordinates $(2, 60^{\circ})$.

Solution: $x = r \cos \theta$ and $y = r \sin \theta$

 $y = 2 \sin 60^{\circ}$ $x = 2 \cos 60^{\circ}$

$$= 2 \times \frac{1}{2} \qquad \qquad = 2 \times \frac{\sqrt{3}}{2}$$
$$= 1 \qquad \qquad = \sqrt{3}$$

1

The Rectangular Coordinates for the point that has Polar Coordinates (2 , 60°) is (1 , $\sqrt{3}$)

Converting from Polar Coordinates to Rectangular Coordinates:

Given $r^2 = x^2 + y^2$ and $tan \theta = \frac{y}{x}$

Example: Find the Polar Coordinates for the point that has Rectangular Coordinates (3, 3).

Solution: $r^2 = x^2 + y^2$ Given: $r^2 = 3^2 + 3^2$ $\tan \theta = \frac{y}{x}$ $r^2 = 9 + 9$ $\tan \theta = \frac{3}{2}$ $r^2 = 18$ $\tan \theta = 1$ $r = \sqrt{18} = 3\sqrt{2}$ $\tan^{-1}(1) = 45^{\circ}$

The Polar Coordinates for the point that has Rectangular Coordinates (3, 3) is $(3\sqrt{2}, 45^{\circ})$.

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

Example: Express the following equations in Polar coordinates (Solve for r): $y^2 = 2x$

Solution:

Step 1: $y^2 = (rsin\theta)^2$ and $2x = 2rcos\theta$

Step 2: $r^2(\sin\theta)^2 = 2r\cos\theta$

Step 3: Solve for r: $r = \frac{2\cos\theta}{(\sin\theta)^2}$

 $r = 2 \frac{\cos \theta}{\sin \theta} \frac{1}{\sin \theta}$ **r = 2cot \theta csc \theta**

Example: Express the following Polar equations in Rectangular Coordinates: $r = 5 \csc \theta$

Solution:

Step 1: $r = \frac{5}{\sin\theta}$ Step 2: $r\sin\theta = 5$ Step 3: $y = r\sin\theta = 5$ y= 5

Practice Exercises:

Find the rectangular coordinates for the point that has the given polar coordinates (Round to two decimal places):

1) (4,80°) 2) (-2,150°) 3) (7,33°)

Find the polar coordinates for the point that has the given rectangular coordinates (Round to two decimal places):

4) (-3,4) 5) (10,-2) 6) (5,7)

Express the following equation in Polar coordinates:

7) $2x^2 = y$

Express the Polar Equation in Rectangular Coordinates:

8) $r = 4 \csc \theta$

Solutions:

1) (0.69, 3.94)2) (1.73, -1)3) (5.87, 3.81)4) (5, 126.87)5) (10.20, 149.97)6) (8.60, 54.46)7) $r = \frac{1}{2} \tan\theta \sec\theta$ 8) y = 4

This instructional aid was prepared by the Tallahassee Community College Learning Commons.