Polar and Rectangular Coordinate Conversions

Polar Coordinate System - Any ordered pair written in the form of (r, θ) where r is the r radius from the Origin point O to a fixed point P and θ is the angle between the Polar Axis and the segment $\overline{\mathrm{OP}}$. Rectangular Coordinate System - Any ordered pair that can be written in the form of (x, y) where x is the horizontal component and y is the vertical component of the point.
$x=r \cos \theta$ and $y=r \sin \theta$

Converting from Polar to Rectangular Coordinates:

Example: Find the Rectangular Coordinates for the point that has Polar Coordinates $\left(2,60^{\circ}\right)$.
Solution: $x=r \cos \theta$ and $y=r \sin \theta$

$$
\begin{array}{ll}
x=2 \cos 60^{\circ} & y=2 \sin 60^{\circ} \\
=2 \times \frac{1}{2} & =2 \times \frac{\sqrt{3}}{2} \\
=1 & =\sqrt{3}
\end{array}
$$

The Rectangular Coordinates for the point that has Polar Coordinates $\left(2,60^{\circ}\right)$ is $(\mathbf{1}, \sqrt{\mathbf{3}})$

Converting from Polar Coordinates to Rectangular Coordinates:

Given $r^{2}=x^{2}+y^{2}$ and $\tan \theta=\frac{y}{x}$
Example: Find the Polar Coordinates for the point that has Rectangular Coordinates $(3,3)$.
Solution: $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}$
Given: $r^{2}=3^{2}+3^{2}$

$$
\tan \theta=\frac{y}{x}
$$

$r^{2}=9+9$
$\tan \theta=\frac{3}{3}$
$r^{2}=18$
$\tan \theta=1$
$r=\sqrt{18}=3 \sqrt{2}$
$\tan ^{-1}(1)=45^{\circ}$
The Polar Coordinates for the point that has Rectangular Coordinates $(3,3)$ is $\left(\mathbf{3} \sqrt{\mathbf{2}}, \mathbf{4 5}{ }^{\circ}\right)$.

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

Example: Express the following equations in Polar coordinates (Solve for r): $y^{2}=2 x$
Solution:
Step 1: $\mathbf{y}^{\mathbf{2}}=(\mathbf{r} \sin \boldsymbol{\theta})^{\mathbf{2}}$ and $\mathbf{2 x}=\mathbf{2 r} \cos \boldsymbol{\theta}$
Step 2: $r^{2}(\sin \theta)^{2}=2 r \cos \theta$
Step 3: Solve for r : $r=\frac{2 \cos \theta}{(\sin \theta)^{2}}$
$r=2 \frac{\cos \theta}{\sin \theta} \frac{1}{\sin \theta} \quad \mathbf{r}=2 \cot \theta \csc \theta$
Example: Express the following Polar equations in Rectangular Coordinates: $r=5 \csc \theta$
Solution:
Step 1: $r=\frac{5}{\sin \theta}$
Step 2: $\operatorname{rsin} \theta=5$
Step 3: $\mathrm{y}=\mathrm{rsin} \theta=5 \quad \mathbf{y}=5$

Practice Exercises:

Find the rectangular coordinates for the point that has the given polar coordinates (Round to two decimal places):

1) $\left(4,80^{\circ}\right)$
2) $\left(-2,150^{\circ}\right)$
3) $\left(7,33^{\circ}\right)$

Find the polar coordinates for the point that has the given rectangular coordinates (Round to two decimal places):
4) $(-3,4)$
5) $(10,-2)$
6) $(5,7)$

Express the following equation in Polar coordinates:
7) $2 x^{2}=y$

Express the Polar Equation in Rectangular Coordinates:
8) $r=4 \csc \theta$

Solutions:

1) $(0.69,3.94)$
2) $(1.73,-1)$
3) $(5.87,3.81)$
4) $(5,126.87)$
5) $(10.20,149.97)$
6) $(8.60,54.46)$
7) $\mathrm{r}=\frac{1}{2} \tan \theta \sec \theta$
8) $y=4$
