Solutions for Sample Medication Administration Math Problems

1) A patient weighs 220 lbs . they need to be given $2 \mathrm{mg} / \mathrm{kg}$, you have the medication in $50 \mathrm{mg} / 10 \mathrm{ml}$. How many ml of medication does the patient need?
$220 \mathrm{lbs} . \times\left(\frac{1 \mathrm{~kg} \text { of body weight }}{2.2 \mathrm{lbs} .}\right) \times\left(\frac{2 \mathrm{mg} \text { medication }}{1 \mathrm{~kg} \text { of bodyweight }}\right) \times\left(\frac{10 \mathrm{~mL} \text { og solution }}{50 \mathrm{mg} \text { medication }}\right)=40 \mathrm{~mL}$
2) A patient weighs 330 lbs . they need to be given $4 \mathrm{mg} / \mathrm{kg}$, you have the medication in 25 mg tablet form. How many tablets of the medication does the patient need?

330 lbs. $\times\left(\frac{1 \mathrm{~kg} \text { of body weight }}{2.2 \text { lbs. }}\right) \times\left(\frac{4 \mathrm{mg} \text { medication }}{1 \mathrm{~kg} \text { of bodyweight }}\right) \times\left(\frac{1 \text { tablet }}{25 \mathrm{mg} \text { medication }}\right)=24$ tablets
3) You need to infuse 25 ml in 10 minutes per infusion pump. What should the rate be set at in $\mathrm{ml} / \mathrm{hr}$?

$$
\frac{25 \mathrm{~mL}}{10 \mathrm{~min}} \times\left(\frac{60 \mathrm{~min}}{1 \mathrm{hr}}\right)=150 \frac{\mathrm{~mL}}{\mathrm{hr}}
$$

4) A patient weighs 110 lbs . they need to be given $5 \mathrm{mg} / \mathrm{kg}$, you have the medication in $125 \mathrm{mg} / 10 \mathrm{ml}$. How many ml of medication does the patient need?
$110 \mathrm{lbs} . \times\left(\frac{1 \mathrm{~kg} \text { of body weight }}{2.2 \mathrm{lbs} .}\right) \times\left(\frac{5 \mathrm{mg} \text { medication }}{1 \mathrm{~kg} \text { of body weight }}\right) \times\left(\frac{10 \mathrm{~mL} \text { of solution }}{125 \mathrm{mg} \text { medication }}\right)=20 \mathrm{~mL}$
5) You need to give $60 \mathrm{mg} / \mathrm{kg}$ of medication to a patient weighing 330 lbs . the medication you have is 50 grains per caplet. How many Caplets must be given to the patient?

$$
\begin{gathered}
330 \text { lbs. } \times\left(\frac{1 \mathrm{~kg} \text { of body weight }}{2.2 \text { lbs. }}\right) \times\left(\frac{60 \mathrm{mg} \text { medication }}{1 \mathrm{~kg} \text { of body weight }}\right) \times\left(\frac{1 \text { grain medication }}{60 \mathrm{mg} \text { medication }}\right) \\
\times\left(\frac{1 \text { caplet }}{50 \text { grains }}\right)=3 \text { caplets }
\end{gathered}
$$

6) At what rate should you set the infusion pump, if you need to give 8 grams/hr per infusion pump and you have 80 grams in 100 ml on hand?

$$
\frac{8 \mathrm{grams}}{1 \mathrm{hr}} \times\left(\frac{100 \mathrm{~mL}}{80 \mathrm{grams}}\right)=10 \frac{\mathrm{~mL}}{\mathrm{hr}}
$$

7) You need to give $120 \mathrm{mg} / \mathrm{kg}$ of medication to a patient weighing 110 lbs . the medication you have is 20 grains per caplet. How many Caplets must be given to the patient?

$$
\begin{gathered}
110 \text { lbs. } \times\left(\frac{1 \mathrm{~kg} \text { of body weight }}{2.2 \text { lbs. }}\right) \times\left(\frac{120 \mathrm{mg} \text { medication }}{1 \mathrm{~kg} \text { of bodyweight }}\right) \times\left(\frac{1 \text { grain medication }}{60 \mathrm{mg} \text { medication }}\right) \\
\times\left(\frac{1 \text { caplet }}{20 \text { grains }}\right)=5 \text { caplets }
\end{gathered}
$$

8) A medication is 40 grams in 200 ml , and the medication is running at $25 \mathrm{ml} / \mathrm{hr}$. What is the drug rate per hr?

$$
\frac{25 m L}{1 h r} \times\left(\frac{40 \mathrm{grams}}{200 m L}\right)=5 \frac{\mathrm{grams}}{h r}
$$

9) How many gtt/min are needed, if 600 ml must be infused in an hour at a drip factor of 60 ?

$$
\frac{600 \mathrm{~mL}}{1 \mathrm{hr}} \times\left(\frac{60 \mathrm{gtt}}{1 \mathrm{~mL}}\right) \times\left(\frac{1 \mathrm{hr}}{60 \mathrm{~min}}\right)=600 \frac{\mathrm{gtt}}{\mathrm{~min}}
$$

10) Using a drip factor of 15 to deliver 400 ml in 2 hours. How many gtt/min are needed?

$$
\frac{400 \mathrm{~mL}}{2 \mathrm{hr}} \times\left(\frac{15 \mathrm{gtt}}{1 \mathrm{~mL}}\right) \times\left(\frac{1 \mathrm{hr}}{60 \mathrm{~min}}\right)=50 \frac{\mathrm{gtt}}{\mathrm{~min}}
$$

11) You need to infuse 50 ml in 30 minutes per infusion pump. What should the rate be set at in $\mathrm{ml} / \mathrm{hr}$?

$$
\frac{50 \mathrm{~mL}}{30 \mathrm{~min}} \times\left(\frac{60 \mathrm{~min}}{1 \mathrm{hr}}\right)=100 \frac{\mathrm{~mL}}{\mathrm{hr}}
$$

12) A patient weighs 165 lbs . they need to be given $2 \mathrm{mg} / \mathrm{kg}$, you have the medication in 50 mg tablet form. How many tablets of the medication does the patient need?
$165 \mathrm{lbs} . \times\left(\frac{1 \mathrm{~kg} \text { of body weight }}{2.2 \mathrm{lbs} .}\right) \times\left(\frac{2 \mathrm{mg} \text { medication }}{1 \mathrm{~kg} \text { of body weight }}\right) \times\left(\frac{1 \text { tablet }}{50 \mathrm{mg} \text { medication }}\right)=3$ tablets
13) At what rate should you set the infusion pump, if you need to give 10 grams $/ \mathrm{hr}$ per infusion pump and you have 50 grams in 100 ml on hand?

$$
\frac{10 \mathrm{grams}}{1 \mathrm{hr}} \times\left(\frac{100 \mathrm{~mL}}{50 \mathrm{grams}}\right)=20 \frac{\mathrm{~mL}}{\mathrm{hr}}
$$

14) Using a drip factor of 10 to deliver 600 ml in 4 hours. How many gtt/min are needed?

$$
\frac{600 \mathrm{~mL}}{4 \mathrm{hr}} \times\left(\frac{10 \mathrm{gtt}}{1 \mathrm{~mL}}\right) \times\left(\frac{1 \mathrm{hr}}{60 \mathrm{~min}}\right)=25 \frac{\mathrm{gtt}}{\min }
$$

15) A medication is 25 grams in 100 ml , and the medication is running at $100 \mathrm{ml} / \mathrm{hr}$. What is the drug rate per hr?

$$
\frac{100 \mathrm{~mL}}{1 \mathrm{hr}} \times\left(\frac{25 \mathrm{grams}}{100 \mathrm{~mL}}\right)=25 \frac{\mathrm{grams}}{\mathrm{hr}}
$$

16) A patient weighs 440 lbs . they need to be given $5 \mathrm{mg} / \mathrm{kg}$, you have the medication in $100 \mathrm{mg} / 10 \mathrm{ml}$. How many ml of medication does the patient need?

440 lbs. $\times\left(\frac{1 \mathrm{~kg} \text { of body weight }}{2.2 \mathrm{lbs} .}\right) \times\left(\frac{5 \mathrm{mg} \text { medication }}{1 \mathrm{~kg} \text { of body weight }}\right) \times\left(\frac{10 \mathrm{~mL}}{100 \mathrm{mg} \text { medication }}\right)=100 \mathrm{~mL}$
17) A patient weighs 55 lbs . they need to be given $3 \mathrm{mg} / \mathrm{kg}$, you have the medication in 25 mg tablet form. How many tablets of the medication does the patient need?
$55 \mathrm{lbs} . \times\left(\frac{1 \mathrm{~kg} \text { of body weight }}{2.2 \mathrm{lbs} .}\right) \times\left(\frac{3 \mathrm{mg} \text { medication }}{1 \mathrm{~kg} \text { of body weight }}\right) \times\left(\frac{1 \text { tablet }}{25 \mathrm{mg} \text { medication }}\right)=3$ tablets
18) Using a drip factor of 60 to deliver 360 ml in an hour. What $\mathrm{gtt} / \mathrm{min}$ is needed?

$$
\frac{360 \mathrm{~mL}}{1 \mathrm{hr}} \times\left(\frac{60 \mathrm{gtt}}{1 \mathrm{~mL}}\right) \times\left(\frac{1 \mathrm{hr}}{60 \mathrm{~min}}\right)=360 \frac{\mathrm{gtt}}{\mathrm{~min}}
$$

19) You need to infuse 100 ml in 20 minutes per infusion pump. What should the rate be set at in $\mathrm{ml} / \mathrm{hr}$?

$$
\frac{100 \mathrm{~mL}}{20 \mathrm{~min}} \times\left(\frac{60 \mathrm{~min}}{1 \mathrm{hr}}\right)=300 \frac{\mathrm{~mL}}{\mathrm{hr}}
$$

20) You need to give $60 \mathrm{mg} / \mathrm{kg}$ of medication to a patient weighing 55 lbs . the medication you have is 25 grains per caplet. How many Caplets must be given to the patient?

$$
\begin{gathered}
55 \text { lbs. } \times\left(\frac{1 \mathrm{~kg} \text { of body weight }}{2.2 \text { lbs. }}\right) \times\left(\frac{60 \mathrm{mg} \text { medication }}{1 \mathrm{~kg} \text { of body weight }}\right) \times\left(\frac{1 \text { grain }}{60 \text { mg medication }}\right) \\
\times\left(\frac{1 \text { caplet }}{25 \text { grains }}\right)=1 \text { caplet }
\end{gathered}
$$

