

General Chemistry formula sheet

Prefix	Symbol	Factor
Giga	G	10 ⁹
Mega	М	10 ⁶
Kilo	K	10 ³
centi	С	10 ⁻²
milli	m	10 ⁻³
micro	μ	10 ⁻⁶
nano	n	10 ⁻⁹

1 mol
$=6.022*10^{23} molecules$
$1 cm^3 = 1 mL$

Name	Formula	Name	Formula
Acetate	$C_2H_3O_2$	Phosphate	PO ₄ ³⁻
Carbonate	CO ₃ ²⁻	Ammonium	NH ₄ ⁺
Bicarbonate	HCO ₃	Chlorite	CIO ₂
Hydroxide	OH ⁻	Chlorate	ClO ₃
Nitrite	NO ₂	Sulfite	SO ₃ ²⁻
Nitrate	NO ₃	Sulfate	SO ₄ ²⁻
Cyanide	CN⁻		

$$\begin{array}{ll} Density = \frac{mass}{volume} & M = \frac{mol \ solute}{L \ solution} & M_1 V_1 = M_2 V_2 \\ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} & PV = nRT & \chi_A = \frac{mol \ A}{total \ mol} \\ P_A = \chi_A * P_{total} & q = mc\Delta T & q = n\Delta H \\ c = \lambda v & \Delta H^\circ_{rxn} = \sum n_p \Delta H^\circ_f - \sum n_r \Delta H^\circ_f \end{array}$$

 $FC = \# of \ valance \ e^- - [\# of \ lone \ pairs + \# of \ bonds]$

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

General Chemistry formula sheet

Prefix	Symbol	Factor
Giga	G	10 ⁹
Mega	M	10 ⁶
Kilo	K	10 ³
centi	С	10 ⁻²
milli	m	10 ⁻³
micro	μ	10 ⁻⁶
nano	n	10 ⁻⁹

$$1 mol$$

$$= 6.022 * 10^{23} molecules$$

$$1 cm^3 = 1 mL$$

Name	Formula	Name	Formula
Acetate	$C_2H_3O_2$	Phosphate	PO ₄ ³⁻
Carbonate	CO ₃ ²⁻	Ammonium	NH ₄ ⁺
Bicarbonate	HCO ₃	Chlorite	CIO ₂
Hydroxide	OH ⁻	Chlorate	CIO ₃
Nitrite	NO ₂	Sulfite	SO ₃ ²⁻
Nitrate	NO ₃	Sulfate	SO ₄ ²⁻
Cyanide	CN ⁻		

$$\begin{array}{lll} Density = \frac{mass}{volume} & M = \frac{mol \ solute}{L \ solution} & M_1V_1 = M_2V_2 \\ \frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} & PV = nRT & \chi_A = \frac{mol \ A}{total \ mol} \\ P_A = \chi_A * P_{total} & q = mc\Delta T & q = n\Delta H \\ c = \lambda v & \Delta H^\circ_{rxn} = \sum n_p \Delta H^\circ_f - \sum n_r \Delta H^\circ_f \\ FC = \# \ of \ valance \ e^- - [\# \ of \ lone \ pairs + \# \ of \ bonds] \end{array}$$

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

General Chemistry formula sheet

$$\begin{split} \ln \frac{P_2}{P_1} &= \frac{-\Delta H_{vap}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) & m &= \frac{mol \ solute}{kg \ Solvent} \\ \Delta T_b &= imK_b & rate &= k[A]^n[B]^m & \ln \frac{K_2}{K_1} &= \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \\ pH + pOH &= 14 & pH &= -\log[H_3O^+] & pOH &= -\log[OH^-] \\ pK_a &= -\log K_a & pH &= pK_a + \log \frac{[base]}{[acid]} & \Delta G^\circ &= -nFE^\circ_{cell} \end{split}$$

Order	Rate law	Integrated rate law	Half-life
0	$rate = k[A]^0$	$[A]_t = [A]_0 - kt$	$t_{\frac{1}{2}} = \frac{[A]_0}{2k}$
1	$rate = k[A]^1$	$\ln[A]_t = \ln[A]_0 - kt$	$t_{\frac{1}{2}} = \frac{\ln 2}{k}$
2	$rate = k[A]^2$	$\frac{1}{[A]_t} = \frac{1}{[A]_0} + kt$	$t_{\frac{1}{2}} = \frac{1}{k[A]_0}$

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

General Chemistry formula sheet

$\ln \frac{P_2}{P_1} = \frac{-\Delta H_{vap}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$	$m = \frac{mol\ solute}{kg\ Solvent}$	$\Delta T_f = imK_f$
$\Delta T_b = imK_b$	$rate = k[A]^n[B]^m$	$\ln \frac{K_2}{K_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
pH + pOH = 14	$pH = -\log[H_3O^+]$	$pOH = -\log[OH^{-}]$
$pK_a = -\log K_a$	$pH = pK_a + \log \frac{[base]}{[acid]}$	$\Delta G^{\circ} = -nFE^{\circ}_{cell}$

Order	Rate law	Integrated rate law	Half-life
0	$rate = k[A]^0$	$[A]_t = [A]_0 - kt$	$t_{\frac{1}{2}} = \frac{[A]_0}{2k}$
1	$rate = k[A]^1$	$\ln[A]_t = \ln[A]_0 - kt$	$t_{\frac{1}{2}} = \frac{\ln 2}{k}$
2	$rate = k[A]^2$	$\frac{1}{[A]_t} = \frac{1}{[A]_0} + kt$	$t_{\frac{1}{2}} = \frac{1}{k[A]_0}$

This instructional aid was prepared by the Tallahassee Community College Learning Commons.