For the audio version of the file, click this link: Converting by Dimensional Analysis Audio

1. How many feet are in 30 inches?
$(30$ inches $) \cdot\left(\frac{1 \text { foot }}{12 \text { inches }}\right)=2.5$ feet
2. Three yards is how many centimeters?

$$
\begin{aligned}
3 \text { yards } & =(3 \text { yards }) \cdot\left(\frac{3 \text { feet }}{1 \text { yard }}\right) \cdot\left(\frac{12 \text { inches }}{1 \text { foot }}\right) \cdot\left(\frac{2.54 \text { centimeters }}{1 \text { inch }}\right) \\
& =274.32 \text { centimeters }
\end{aligned}
$$

3. (TRIGONOMETRY) How many radians are in 3 complete revolutions?
$(3 \overline{\text { revolutions }}) \cdot\left(\frac{2 \pi \text { radians }}{1 \text { revotution }}\right)=6 \pi$ radians
4. (PHYSICS) A train is traveling at 60 miles per hour. The brakes are applied and the train comes to a complete halt in 30 seconds. Find the rate of deceleration in feet per second squared.

$$
\begin{array}{ll}
\mathrm{v}=\mathrm{v}_{\mathrm{o}}+\mathrm{at} & \text { (the formula to use) } \\
0=\left(\frac{60 \mathrm{miles}}{1 \mathrm{hour}}\right)+\mathrm{a} \bullet(30 \text { seconds }) & \text { (solving for } \underline{a} \text { in this equation yields) } \\
\mathrm{a}=-\left(\frac{60 \mathrm{miles}}{1 \text { hour }}\right) \bullet\left(\frac{1}{30 \text { seconds }}\right) \\
\mathrm{a}=-\left(\frac{60 \text { miles }}{1 \text { hour }}\right) \bullet\left(\frac{1}{30 \text { seconds }}\right) \bullet\left(\frac{5280 \text { feet }}{1 \text { mile }}\right) \bullet\left(\frac{1 \text { 1our }}{60 \text { minutes }}\right) \bullet\left(\frac{1 \text { minute }}{60 \text { seconds }}\right) \\
\mathrm{a}=-2.93 \mathrm{ft} / \mathrm{s}^{2}
\end{array}
$$

5. (CHEMISTRY) Liquid mercury has a density of $13.6 \mathrm{~g} / \mathrm{ml}$ at $20^{\circ} \mathrm{C}$. Find the mass in kilograms of 804 liters of mercury at 20 degrees Celsius.

$$
\begin{aligned}
\text { mass } & =(\text { density }) \bullet(\text { volume }) \quad \text { (replacing the given values into this formula yields) } \\
& =\left(\frac{13.6 \text { grams }}{1 \text { milliliter }}\right) \bullet\left(\frac{804 \text { liters }}{1}\right) \\
& =\left(\frac{13.6 \text { grams }}{1 \text { milliliter }}\right) \bullet\left(\frac{804 \text { liters }}{1}\right) \bullet\left(\frac{1000 \text { mittiliters }}{1 \text { titer }}\right) \bullet\left(\frac{1 \text { kilogram }}{1000 \text { grams }}\right) \\
& =10,934.4 \mathrm{~kg}
\end{aligned}
$$

