OXIDATION-REDUCTION REACTIONS ADDITIONAL PRACTICE

I. After studying sections 4.6 - 4.7 in you text, determine the oxidation number for each element in the following compounds. Answers are listed at the end of the worksheet.

Hint: Always work from the outside (of formula) to determine the oxidation number for transition metals and/or nonmetals in polyatomic ions.

- (a) S_8 (b) TiCl₄ (c) N_2O_4 (d) H_3PO_4 (e) $Cr_2(SO_4)_3$ (f) $Fe(NO_2)_3$
- II. Determine the oxidation numbers. Label which reactant species is oxidized and which is reduced; then label which reactant is the oxidizing agent and which is the reducing agent.

(a) 4 Fe + 3
$$O_2$$
 -> 2 Fe₂ O_3

(b) Mg + 2 AgNO₃
$$\rightarrow$$
 Mg(NO₃)₂ + 2 Ag

(c)
$$I_2 + 2 S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} + 2 I^{-}$$

(d) $2 \text{ K} + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ KOH} + \text{H}_2$

(e)
$$3 H_3AsO_3 + BrO_3^- \rightarrow Br^- + 3 H_3AsO_4$$

ANSWERS: I. (a) S = 0 (b) Ti=4+ Cl=1-(c) N=4+ O=2- (d) H=1+ P=5+ O=2-(e) Cr=3+ S=6+ O=2- (f) Fe=3+ N=3+ O=2-

II. 0 0 3+ 2-(a) 4 Fe + 3 O_2 -> 2 Fe₂ O_3

> Each Fe lost $3 e^{-}$ so Fe is oxidized & is reducing agent. Each O gained $2e^{-}$ so O_2 was reduced & is oxidizing agent.

(b) $\underset{Mg}{0} + 2 \underset{AgNO_3}{1+5+2-} \xrightarrow{2+5+2-} 0 \underset{Mg(NO_3)_2}{0} + 2 \underset{Ag}{AgNO_3}$

Each Mg lost $2e^{-}$ so Mg is oxidized & is reducing agent. Each Ag gained $1e^{-}$ so Ag in AgNO₃ was reduced & AgNO₃ is oxidizing agent.

(c)
$$I_2^0 + 2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2I^-$$

Each S lost $0.5 e^-$ so S in S₂O₃²⁻ is oxidized & S₂O₃²⁻ is reducing agent. Each I gained $1e^-$ so I₂ was reduced & is oxidizing agent.

(d)
$$2 \overset{0}{K} + 2 \overset{1+2-}{H_2O} \rightarrow 2 \overset{1+2-1+}{KOH} \overset{0}{H_2}$$

Each K lost 1 e⁻ so K is oxidized & is reducing agent. Each H gained 1e⁻ so H in H_2O was reduced & H_2O is oxidizing agent.

(e)
$$3 \frac{1+3+2-}{H_3AsO_3} + \frac{5+2-}{BrO_3^-} \rightarrow \frac{1-}{Br^-} + 3 \frac{1+5+2-}{H_3AsO_4}$$

Each As lost $2e^-$ so As in H₃AsO₃ is oxidized & H₃AsO₃ is reducing agent. Each Br gained $6e^-$ so Br in BrO₃⁻ was reduced & BrO₃⁻ is oxidizing agent.