## OXIDATION-REDUCTION REACTIONS ADDITIONAL PRACTICE

I. After studying sections $4.6-4.7$ in you text, determine the oxidation number for each element in the following compounds. Answers are listed at the end of the worksheet.

Hint: Always work from the outside (of formula) to determine the oxidation number for transition metals and/or nonmetals in polyatomic ions.
(a) $\mathrm{S}_{8}$
(b) $\mathrm{TiCl}_{4}$
(c) $\mathrm{N}_{2} \mathrm{O}_{4}$
(d) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(e) $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(f) $\mathrm{Fe}\left(\mathrm{NO}_{2}\right)_{3}$
II. Determine the oxidation numbers. Label which reactant species is oxidized and which is reduced; then label which reactant is the oxidizing agent and which is the reducing agent.
(a) $4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$
(b) $\mathrm{Mg}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$
(c) $\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{I}^{-}$
(d) $2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+\mathrm{H}_{2}$
(e) $3 \mathrm{H}_{3} \mathrm{AsO}_{3}+\mathrm{BrO}_{3}^{-} \rightarrow \mathrm{Br}^{-}+3 \mathrm{H}_{3} \mathrm{AsO}_{4}$

ANSWERS:
I. (a) $S=0$
(b) $\mathrm{Ti}=4+\quad \mathrm{Cl}=1-$
(c) $\mathrm{N}=4+\quad \mathrm{O}=2-$
(d) $\mathrm{H}=1+\quad \mathrm{P}=5+\quad \mathrm{O}=2-$
(e) $\mathrm{Cr}=3+\quad \mathrm{S}=6+\quad \mathrm{O}=2-$
(f) $\mathrm{Fe}=3+\quad \mathrm{N}=3+\quad \mathrm{O}=2-$

Each Fe lost $3 \mathrm{e}^{-}$so Fe is oxidized \& is reducing agent.
Each O gained $2 \mathrm{e}^{-}$so $\mathrm{O}_{2}$ was reduced \& is oxidizing agent.
(b) $\stackrel{0}{\mathrm{Mg}}+2 \stackrel{1+5+2-}{\mathrm{AgNO}_{3}} \rightarrow \stackrel{2+5+2-}{\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}}+\underset{\mathrm{Ag}}{\mathrm{A}}$

Each Mg lost $2 \mathrm{e}^{-}$so Mg is oxidized \& is reducing agent.
Each Ag gained $1 \mathrm{e}^{-}$so Ag in $\mathrm{AgNO}_{3}$ was reduced \& $\mathrm{AgNO}_{3}$ is oxidizing agent.
(c) $\quad{ }_{\mathrm{I}}^{2}+2{\stackrel{2+}{\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}} \rightarrow{ }^{2.5+} \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}}^{2-}+2 \mathrm{I}^{-}$

Each S lost $0.5 \mathrm{e}^{-}$so S in $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ is oxidized \& $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ is reducing agent.
Each I gained $1 \mathrm{e}^{-}$so $\mathrm{I}_{2}$ was reduced \& is oxidizing agent.
(d) $2 \stackrel{0}{\mathrm{~K}}+2 \stackrel{1+2-}{\mathrm{H}_{2} \mathrm{O}} \rightarrow 2 \stackrel{1+2-1+}{\mathrm{KOH}}+\stackrel{0}{\mathrm{H}}_{2}$

Each K lost $1 \mathrm{e}^{-}$so K is oxidized \& is reducing agent.
Each H gained $1 \mathrm{e}^{-}$so H in $\mathrm{H}_{2} \mathrm{O}$ was reduced \& $\mathrm{H}_{2} \mathrm{O}$ is oxidizing agent.
(e) $3 \mathrm{H}_{3} \mathrm{AsO}_{3}+\stackrel{5+2-}{\mathrm{BrO}_{3}^{-}} \rightarrow \mathrm{Br}^{-}+3 \mathrm{H}_{3} \mathrm{AsO}_{4}$

Each As lost $2 \mathrm{e}^{-}$so As in $\mathrm{H}_{3} \mathrm{AsO}_{3}$ is oxidized \& $\mathrm{H}_{3} \mathrm{AsO}_{3}$ is reducing agent.
Each Br gained $6 \mathrm{e}^{-}$so Br in $\mathrm{BrO}_{3}{ }^{-}$was reduced $\& \mathrm{BrO}_{3}{ }^{-}$is oxidizing agent.

