Chapter 16: Buffer Calculations – Answer Key

Example 1 - Buffer Method 1

What is the pH of a buffer made by adding 4.68g of sodium benzoate (NaC₇H₅O₂) to 250.0mL of 0.15M benzoic acid solution? $K_a = 6.5 \times 10^{-5}$

Need concentration of the conjugate base benzoate ion $(C_7H_5O_2^-)$:

$$(4.68 \text{g NaC}_7 \text{H}_5 \text{O}_2) \left(\frac{1 \text{mol NaC}_7 \text{H}_5 \text{O}_2}{144.1 \text{g NaC}_7 \text{H}_5 \text{O}_2} \right) \left(\frac{1 \text{mol C}_7 \text{H}_5 \text{O}_2^-}{1 \text{mol NaC}_7 \text{H}_5 \text{O}_2} \right) = 0.325 \text{mol C}_7 \text{H}_5 \text{O}_2^-$$

$$\left[\text{C}_7 \text{H}_5 \text{O}_2^- \right] = \frac{0.0325 \text{mol C}_7 \text{H}_5 \text{O}_2^-}{0.25 \text{L}_5} = 0.13 \text{M C}_7 \text{H}_5 \text{O}_2^-$$

	HC ₇ H ₅ O ₂	+	H ₂ O	\Leftrightarrow	H_3O^+	+	$C_7H_5O_2^-$
Ι	0.15M				0		0.13M
С	—X				$+_{X}$		$+_{\rm X}$
Е	0.15 - x				Х		0.13 + x

$$K_{a} = \frac{[H_{3}O^{+}][C_{7}H_{5}O_{2}^{-}]}{[HC_{7}H_{5}O_{2}]} \qquad 6.5x10^{-5} = \frac{(x(0.13 + x))}{(0.15 - x)} \qquad x = 7.5 \times 10^{-5}M \qquad pH = 4.13$$

CHECK: Henderson - Hasselbalch Equation

If assume x is small compared to initial concentrations of acid and conjugate base, one can use the initial values of the acid and conjugate base for equilibrium concentrations.

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$

$$[H^{+}] = \frac{K_{a}[HA]}{[A^{-}]}$$

$$-\log[H^{+}] = -\log K_{a} - \log\left(\frac{[HA]}{[A^{-}]}\right)$$

$$pH = pK_{a} + \log\left(\frac{[A^{-}]}{[HA]}\right)$$

$$pH = pK_{a} + \log\left(\frac{[base]}{[acid]}\right)$$

pH =
$$-\log(6.5 \times 10^{-5}) + \log\left(\frac{0.13}{0.15}\right) = 4.19 + (-0.062) = 4.13$$

Example 2 - Buffer Method 2

What is the pH of a buffer made by adding 125mL of 0.14M HC₇H₅O₂ solution with 165mL of 0.16M NaC₇H₅O₂ solution? $K_a = 6.5 \times 10^{-5}$

Need concentrations of the conjugate acid and base in the mixture.

$$(0.125L) \left(\frac{0.14 \text{mol } \text{HC}_7 \text{H}_5 \text{O}_2}{\text{L solution}} \right) = 0.0175 \text{mol } \text{HC}_7 \text{H}_5 \text{O}_2$$
$$[\text{HC}_7 \text{H}_5 \text{O}_2] = \left(\frac{0.0175 \text{mol } \text{HC}_7 \text{H}_5 \text{O}_2}{0.290 \text{L solution}} \right) = 0.060 \text{M } \text{HC}_7 \text{H}_5 \text{O}_2$$
$$(0.165L) \left(\frac{0.16 \text{mol } \text{NaC}_7 \text{H}_5 \text{O}_2}{\text{L solution}} \right) = 0.0264 \text{mol } \text{NaC}_7 \text{H}_5 \text{O}_2$$
$$[\text{C}_7 \text{H}_5 \text{O}_2] = \left(\frac{0.0264 \text{mol } \text{C}_7 \text{H}_5 \text{O}_2^-}{0.290 \text{L solution}} \right) = 0.091 \text{M } \text{C}_7 \text{H}_5 \text{O}_2$$

	HC7H5O2	+	H ₂ O	\Leftrightarrow	H_3O^+	+	$C_7H_5O_2^-$
Ι	0.060M				0		0.091M
С	—X				$+_{\mathbf{X}}$		$+_{\rm X}$
E	0.060 - x				X		0.091 + x

$$K_{a} = \frac{[H_{3}O^{+}][C_{7}H_{5}O_{2}^{-}]}{[HC_{7}H_{5}O_{2}]} \qquad 6.5x10^{-5} = \frac{(x(0.091 + x))}{(0.060 - x)} \qquad x = 4.3 \times 10^{-5}M \qquad pH = 4.37$$

CHECK: pH =
$$-\log(6.5 \times 10^{-5}) + \log\left(\frac{0.091}{0.060}\right) = 4.19 + (+0.18) = 4.37$$

Example 3 – Buffer Range At what pH does buffer work best? Best buffer system when $pH = pK_a$ What is the range of a buffer? Buffer works within ±1 of pK_a value so buffer $pH = pK_a \pm 1$

What is the buffer range of benzoic acid/benzoate buffer? $pK_a = -log(6.5x10^{-5}) = 4.19$ Buffer range = 4.19 ± 1 so 3.19 to 5.19

What is the pH for best buffer capacity and what is the buffering range for each of the following?

Buffer components	pH best buffering capacity	Buffer range
$HC_{2}H_{3}O_{2}$ / $C_{2}H_{3}O_{2}^{-}$	$pK_a = 4.74$	3.74 - 5.74
HCIO / CIO ⁻	$pK_a = 7.52$	6.52 - 8.52
$HCO_{3}^{-} / CO_{3}^{2-}$	$pK_a = 10.25$	9.25 - 11.25
HCHO ₂ / CHO ₂ ⁻	$pK_a = 3.74$	2.74 - 4.74
NH4 ⁺ / NH3	$pK_a = 9.25$	8.25 - 10.25

Example 4 – Addition of base to buffer

What is the new pH if 5.0 mL of 0.50M NaOH is added to 50.0mL of benzoic acid-benzoate buffer from problem 1?

$$[HC_7H_5O_2] = 0.15M$$
 $[C_7H_5O_2^{-}] = 0.13M$

First determine how much buffer reacts since NaOH is a strong <u>base</u>, NaOH will react 100% with the acid component of the buffer. MUST WORK STOICHIOMETRY IN MOLES.

	$HC_7H_5O_2$	+ NaOH \rightarrow H ₂	$O + NaC_7H_5O_2$
	(0.0500L x 0.15M)	(0.0050L x 0.50M)	(0.0500L x 0.13M)
Initial mol	0.0075 mol	0.0025 mol	0.0065 mol
Reaction	<u>-0.0025 mol</u>	<u>– 0.0025 mol</u>	<u>+0.0025 mol</u>
Final mol	0.0050 mol	0 mol	0.0090 mol

Note: <u>Must divide by the total volume before entering new values into ICE chart</u>. Total volume = 50.0 mL + 5.0 mL = 55.0 mL or 0.0550 L

	HC ₇ H ₅ O ₂	+	H ₂ O	\Leftrightarrow	H_3O^+	+	$C_7H_5O_2^-$	
Ι	0.091M				0		0.16M	
С	—X				$+_{\mathbf{X}}$		$+_{\rm X}$	
Е	0.091 - x				Х		0.16 + x	
$K = \frac{[H]}{[H]}$	$[_{3}O^{+}][C_{7}H_{5}O_{2}^{-}]$	65	$x_{10^{-5}} = \frac{(x(0.10^{-5}))}{(x(0.10^{-5}))}$	(b+x))	$x = 3.7 \times 10^{-5}$	М	nH = 4.43	

$$K_{a} = \frac{[H_{3}O_{-}][C_{7}H_{5}O_{2}]}{[HC_{7}H_{5}O_{2}]} \qquad 6.5x10^{-5} = \frac{(X(0.10+X))}{(0.091-x)} \qquad x = 3.7 \times 10^{-5}M \qquad pH = 4.43$$

Note small change $4.13 \rightarrow 4.43$

CHECK:
$$pH = -\log(6.5 \times 10^{-5}) + \log\left(\frac{0.16}{0.091}\right) = 4.19 + (+0.25) = 4.44$$

Example 5 – Addition of acid to buffer

What is the new pH if 10.0 mL of 0.15M HCl was added to 50.0mL of benzoic acid-benzoate buffer from problem 1?

 $[HC_7H_5O_2] = 0.15M$ $[C_7H_5O_2^{-}] = 0.13M$

First determine how much buffer reacts since HCl is a strong <u>acid</u>, HCl will react 100% with the <u>base component of the buffer</u>. MUST WORK STOICHIOMETRY IN MOLES.

	NaC ₇ H ₅ O ₂	+ HCl	_>	HC ₇ H ₅ O ₂ + NaCl
	(0.0500L x 0.13M)	(0.010L x 0.15M)		(0.0500L x 0.15M)
Initial mol	0.0065 mol	0.0015 mol		0.0075 mol
Reaction	- 0.0015 mol	<u>– 0.0015 mol</u>		+ 0.0015 mol
Final mol	0.0050 mol	0 mol		0.0090 mol

Note: <u>Must divide by the total volume before entering new values into ICE chart</u>. Total volume = 50.0 mL + 10.0 mL = 60.0 mL or 0.0600 L

$[HC_7H_5O_2] = \frac{0.0090mol}{0.0600L} = 0.15M$				[C ₇ H ₅ O	$\left[\frac{1}{2}\right] = \frac{0.0050 \text{m}}{0.06002}$	$\frac{\text{nol}}{\text{L}}$ =0.083M		
		HC ₇ H ₅ O ₂	+	H ₂ O	\Leftrightarrow	H_3O^+	+	$C_7H_5O_2^-$
	Ι	0.15M				0		0.083M
	С	—X				$+_{\mathbf{X}}$		$+_{\mathbf{X}}$
	E	0.15 - x				x		0.083 + x

$$K_{a} = \frac{[H_{3}O^{+}][C_{7}H_{5}O_{2}]}{[HC_{7}H_{5}O_{2}]} \qquad 6.5x10^{-5} = \frac{(x(0.083+x))}{(0.15-x)} \qquad x = 1.2 \times 10^{-4}M \qquad pH = 3.93$$

Note small change $4.13 \rightarrow 3.93$

CHECK: pH =-log(6.5x10⁻⁵) + log
$$\left(\frac{0.083}{0.15}\right)$$
 = 4.19 + (-0.26) = 3.93

Example 6 – Depleting buffer

How much of the 0.15M HCl would have to be added to 50.0 mL of the benzoic acid/benzoate buffer to deplete it completely?

$$[HC_7H_5O_2] = 0.15M$$
 $[C_7H_5O_2^-] = 0.13M$

Since an acid added to a buffer will act with the conjugate base, determine how much acid will be required to react with 50.0 mL of $0.13M \text{ C}_7\text{H}_5\text{O}_2^-$.

	NaC ₇ H ₅ O ₂	+	HCl	_>	$HC_7H_5O_2 +$	NaCl
	(0.0500L x 0.13M)		(?Lx0.15M)		(0.0500L x 0.15M)	
Initial mol	0.0065 mol		0.0065 mol		0.0075 mol	
Reaction	<u>-0.0065 mol</u>		<u>– 0.0065 mol</u>		+ 0.0065 mol	
Final mol	0 mol		0 mol		0.0140 mol	

 $(0.0065 \text{mol HCl}) \left(\frac{1L}{0.15 \text{mol HCl}} \right) = 0.043 \text{L} = 43 \text{mL}$

Buffer would be depleted when 43mL of 0.15M HCl has been added. At this point only acid HC₇H₅O₂ remains. <u>Note: can NOT use Henderson-Hasselbalch equation</u> since NO longer a buffer.

$$[HC_7H_5O_2] = \frac{0.0140 \text{ mol}}{0.093L} = 0.15M$$
 Volume = 50. mL + 43 mL = 93 mL

What would be the pH of the resulting solution?

	HC7H5O2	+	H ₂ O	\Leftrightarrow	H_3O^+	+	$C_7H_5O_2^-$
Ι	0.15M				0		0
С	—X				$+_{\rm X}$		$+_{\mathbf{X}}$
E	0.15 - x				Х		Х
к_[H	$_{3}O^{+}][C_{7}H_{5}O_{2}^{-}]$	6.5	$x 10^{-5} - X^2$	v -	-2.1×10^{-3} M	рЦ	- 2 51

$$K_{a} = \frac{[H_{3}O^{+}][C_{7}H_{5}O_{2}^{-}]}{[HC_{7}H_{5}O_{2}]} \qquad \qquad 6.5 \times 10^{-5} = \frac{x^{2}}{(0.15 - x)} \qquad \qquad x = 3.1 \times 10^{-3}M \qquad pH = 2.51$$

Note: Much larger pH change 4.13 -> 2.51 since no longer a buffer.

Example 7 – Determining acid/base ratio needed for buffer pH

When need to know either

(A) how much of one of the buffer components to add to produce a certain pH or

(B) what ratio of conjugate base to acid is needed to produce a certain pH,

use Henderson-Hasselbalch equation.

How many grams of sodium benzoate $(NaC_7H_5O_2)$ must be added to 100. mL of 0.13M benzoic acid $(HC_7H_5O_2)$ to produce a buffer with a pH of 4.30?

$$\begin{split} &K_{a} = 6.5 \text{ x } 10^{-5} \quad pK_{a} = -\log K_{a} = -\log(6.5 \text{ x } 10^{-5}) = 4.19 \\ &pH = pK_{a} + \log\left(\frac{[\text{base}]}{[\text{acid}]}\right) \\ &4.30 = 4.19 + \log\left(\frac{[\text{base}]}{0.13M}\right) \\ &\log\left(\frac{[\text{base}]}{0.13M}\right) = 4.30 - 4.19 = 0.11 \\ &\frac{[\text{base}]}{0.13M} = 10^{0.11} = 1.3 \quad \text{So ratio of [base] must be } 1.3 \text{ x [acid].} \\ &[\text{base}] = [\text{NaC}_{7}\text{H}_{5}\text{O}_{2}] = 1.3 \text{ x } 0.13\text{M} = 0.17\text{M} \end{split}$$

$$(0.100 \text{ L}) \left(\frac{0.17 \text{mol NaC}_7 \text{H}_5 \text{O}_2}{\text{L}}\right) \left(\frac{144.1 \text{g NaC}_7 \text{H}_5 \text{O}_2}{1 \text{mol NaC}_7 \text{H}_5 \text{O}_2}\right) = 2.4 \text{g NaC}_7 \text{H}_5 \text{O}_2$$

Since need to prepare 100. mL of buffer at pH 4.30, measure out 2.4 g $NaC_7H_5O_2$ and add 0.13M acid $HC_7H_5O_2$ to total volume of 100. mL.

Blood Buffer System