Chapter 16: Buffer Calculations - Answer Key

Example 1 - Buffer Method 1
What is the pH of a buffer made by adding 4.68 g of sodium benzoate $\left(\mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)$ to 250.0 mL of 0.15 M benzoic acid solution? $\mathrm{K}_{\mathrm{a}}=6.5 \times 10^{-5}$

Need concentration of the conjugate base benzoate ion $\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}\right)$:

$$
\begin{aligned}
& \left(4.68 \mathrm{~g} \mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}{144.1 \mathrm{~g} \mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}}{1 \mathrm{~mol} \mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}\right)=0.325 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-} \\
& {\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]=\frac{0.0325 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}}{0.25 \mathrm{~L}}=0.13 \mathrm{M} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}}
\end{aligned}
$$

	$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$	+	$\mathrm{H}_{2} \mathrm{O}$	\Leftrightarrow	$\mathrm{H}_{3} \mathrm{O}^{+}$
I	0.15 M		+	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}$	
C	-x			+x	0.13 M
E	$0.15-\mathrm{x}$			x	+x

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}\right]}{\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]} \quad 6.5 \times 10^{-5}=\frac{(\mathrm{x}(0.13+\mathrm{x}))}{(0.15-\mathrm{x})} \quad \mathrm{x}=7.5 \times 10^{-5} \mathrm{M} \quad \mathrm{pH}=4.13
$$

CHECK: Henderson - Hasselbalch Equation
If assume x is small compared to initial concentrations of acid and conjugate base, one can use the initial values of the acid and conjugate base for equilibrium concentrations.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
& {\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{a}}[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}} \\
& -\log \left[\mathrm{H}^{+}\right]=-\log \mathrm{K}_{\mathrm{a}}-\log \left(\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}\right) \\
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right) \\
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right) \\
& \mathrm{pH}=-\log \left(6.5 \times 10^{-5}\right)+\log \left(\frac{0.13}{0.15}\right)=4.19+(-0.062)=4.13
\end{aligned}
$$

Example 2 - Buffer Method 2

What is the pH of a buffer made by adding 125 mL of $0.14 \mathrm{M} \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ solution with 165 mL of $0.16 \mathrm{M} \mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ solution? $\mathrm{K}_{\mathrm{a}}=6.5 \times 10^{-5}$

Need concentrations of the conjugate acid and base in the mixture.

$$
\begin{aligned}
& (0.125 \mathrm{~L})\left(\frac{0.14 \mathrm{~mol} \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}{\mathrm{~L} \text { solution }}\right)=0.0175 \mathrm{~mol} \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2} \\
& {\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]=\left(\frac{0.0175 \mathrm{~mol} \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}{0.290 \mathrm{~L} \text { solution }^{2}}\right)=0.060 \mathrm{M} \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}} \\
& (0.165 \mathrm{~L})\left(\frac{0.16 \mathrm{~mol} \mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}{\mathrm{~L} \text { solution }}\right)=0.0264 \mathrm{~mol} \mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2} \\
& {\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]=\left(\frac{0.0264 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}}{0.290 \mathrm{~L} \text { solution }}\right)=0.091 \mathrm{M} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}}
\end{aligned}
$$

	$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$	+	$\mathrm{H}_{2} \mathrm{O}$	\Leftrightarrow	$\mathrm{H}_{3} \mathrm{O}^{+}$
I	0.060 M		0	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}$	
C	-x				0.091 M
E	$0.060-\mathrm{x}$				x
+x					

$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}\right]}{\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]}$
$6.5 \times 10^{-5}=\frac{(x(0.091+x))}{(0.060-x)}$
$\mathrm{pH}=4.37$

CHECK: $\quad \mathrm{pH}=-\log \left(6.5 \times 10^{-5}\right)+\log \left(\frac{0.091}{0.060}\right)=4.19+(+0.18)=4.37$

Example 3 - Buffer Range
At what pH does buffer work best? Best buffer system when $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$
What is the range of a buffer? Buffer works within ± 1 of pK_{a} value so buffer $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}} \pm 1$
What is the buffer range of benzoic acid/benzoate buffer?
$\mathrm{pK}_{\mathrm{a}}=-\log \left(6.5 \times 10^{-5}\right)=4.19 \quad$ Buffer range $=4.19 \pm 1 \quad$ so $\quad 3.19$ to 5.19
What is the pH for best buffer capacity and what is the buffering range for each of the following?

Buffer components	pH best buffering capacity	Buffer range
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} / \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	$\mathrm{pK}_{\mathrm{a}}=4.74$	$3.74-5.74$
$\mathrm{HClO}^{-} / \mathrm{ClO}^{-}$	$\mathrm{pK}_{\mathrm{a}}=7.52$	$6.52-8.52$
$\mathrm{HCO}_{3}{ }^{-} / \mathrm{CO}_{3}{ }^{2-}$	$\mathrm{pK}_{\mathrm{a}}=10.25$	$9.25-11.25$
$\mathrm{HCHO}_{2} / \mathrm{CHO}_{2}{ }^{-}$	$\mathrm{pK}_{\mathrm{a}}=3.74$	$2.74-4.74$
$\mathrm{NH}_{4}{ }^{+} / \mathrm{NH}_{3}$	$\mathrm{pK}_{\mathrm{a}}=9.25$	$8.25-10.25$

Example 4 -Addition of base to buffer
What is the new pH if 5.0 mL of 0.50 M NaOH is added to 50.0 mL of benzoic acid-benzoate buffer from problem 1 ?
$\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]=0.15 \mathrm{M} \quad\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}\right]=0.13 \mathrm{M}$
First determine how much buffer reacts since NaOH is a strong base, NaOH will react 100% with the acid component of the buffer. MUST WORK STOICHIOMETRY IN MOLES.

	$\begin{array}{r} \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2} \\ (0.0500 \mathrm{~L} \times 0.15 \mathrm{M}) \end{array}$	$\begin{aligned} & +\underset{(0.0050 \mathrm{LaOH} \times 0.50 \mathrm{M})}{\mathrm{NaO}} \end{aligned}$	$\mathrm{H}_{2} \mathrm{O}$	$+\underset{(0.0500 \mathrm{~L} \times 0.13 \mathrm{M})}{\mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}$
Initial mol	0.0075 mol	0.0025 mol		0.0065 mol
Reaction	$-0.0025 \mathrm{~mol}$	-0.0025 mol		+ 0.0025 mol
Final mol	0.0050 mol	0 mol		0.0090 mol

Note: Must divide by the total volume before entering new values into ICE chart.
Total volume $=50.0 \mathrm{~mL}+5.0 \mathrm{~mL}=55.0 \mathrm{~mL}$ or 0.0550 L
$\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]=\frac{0.0050 \mathrm{~mol}}{0.0550 \mathrm{~L}}=0.091 \mathrm{M} \quad\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]=\frac{0.0090 \mathrm{~mol}}{0.0550 \mathrm{~L}}=0.16 \mathrm{M}$

	$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$	+	$\mathrm{H}_{2} \mathrm{O}$	\Leftrightarrow	$\mathrm{H}_{3} \mathrm{O}^{+}$	+
I	0.091 M		$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}$			
C	-x		0	0.16 M		
E	$0.091-\mathrm{x}$			+x	+x	

$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]} \quad 6.5 \times 10^{-5}=\frac{(\mathrm{x}(0.16+\mathrm{x}))}{(0.091-\mathrm{x})} \quad \mathrm{x}=3.7 \times 10^{-5} \mathrm{M} \quad \mathrm{pH}=4.43$
Note small change $4.13->4.43$
CHECK: $\quad \mathrm{pH}=-\log \left(6.5 \times 10^{-5}\right)+\log \left(\frac{0.16}{0.091}\right)=4.19+(+0.25)=4.44$
Example 5 -Addition of acid to buffer
What is the new pH if 10.0 mL of 0.15 M HCl was added to 50.0 mL of benzoic acid-benzoate buffer from problem 1 ?
$\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]=0.15 \mathrm{M} \quad\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}\right]=0.13 \mathrm{M}$
First determine how much buffer reacts since HCl is a strong acid, HCl will react 100% with the base component of the buffer. MUST WORK STOICHIOMETRY IN MOLES.

	$\mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$	+	HCl	->	$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}+\mathrm{NaCl}$
	($0.0500 \mathrm{~L} \times 0.13 \mathrm{M}$)		(0.010L $\times 0.15 \mathrm{M}$)		(0.0500L x 0.15 M)
Initial mol	0.0065 mol		0.0015 mol		0.0075 mol
Reaction	$-0.0015 \mathrm{~mol}$		$-0.0015 \mathrm{~mol}$		+ 0.0015 mol
Final mol	0.0050 mol		0 mol		0.0090 mol

Note: Must divide by the total volume before entering new values into ICE chart.
Total volume $=50.0 \mathrm{~mL}+10.0 \mathrm{~mL}=60.0 \mathrm{~mL}$ or 0.0600 L
$\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]=\frac{0.0090 \mathrm{~mol}}{0.0600 \mathrm{~L}}=0.15 \mathrm{M} \quad\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]=\frac{0.0050 \mathrm{~mol}}{0.0600 \mathrm{~L}}=0.083 \mathrm{M}$

	$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$	+	$\mathrm{H}_{2} \mathrm{O}$	\Leftrightarrow	$\mathrm{H}_{3} \mathrm{O}^{+}$
I	0.15 M	+	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}$		
C	-x			+x	0.083 M
E	$0.15-\mathrm{x}$			x	+x

$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]} \quad 6.5 \times 10^{-5}=\frac{(\mathrm{x}(0.083+\mathrm{x}))}{(0.15-\mathrm{x})} \quad \mathrm{x}=1.2 \times 10^{-4} \mathrm{M} \quad \mathrm{pH}=3.93$
Note small change 4.13 -> 3.93
CHECK: $\quad \mathrm{pH}=-\log \left(6.5 \times 10^{-5}\right)+\log \left(\frac{0.083}{0.15}\right)=4.19+(-0.26)=3.93$
Example 6 - Depleting buffer
How much of the 0.15 M HCl would have to be added to 50.0 mL of the benzoic acid/benzoate buffer to deplete it completely?
$\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]=0.15 \mathrm{M} \quad\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}\right]=0.13 \mathrm{M}$

Since an acid added to a buffer will act with the conjugate base, determine how much acid will be required to react with 50.0 mL of $0.13 \mathrm{M} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}$.

	$\underset{(0.0500 \mathrm{~L} \times 0.13 \mathrm{M})}{\mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}$	$\begin{gathered} \mathrm{HCl} \\ \text { (? } \mathrm{Lx} 0.15 \mathrm{M}) \end{gathered}$	->	$\underset{(0.0500 \mathrm{~L} \times 0.15 \mathrm{M})}{\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}$
Initial mol	0.0065 mol	0.0065 mol		0.0075 mol
Reaction	$-0.0065 \mathrm{~mol}$	-0.0065 mol		+ 0.0065 mol
Final mol	0 mol	0 mol		0.0140 mol

Buffer would be depleted when 43 mL of 0.15 M HCl has been added.
At this point only acid $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ remains. Note: can NOT use Henderson-Hasselbalch equation since NO longer a buffer.
$\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]=\frac{0.0140 \mathrm{~mol}}{0.093 \mathrm{~L}}=0.15 \mathrm{M} \quad$ Volume $=50 . \mathrm{mL}+43 \mathrm{~mL}=93 \mathrm{~mL}$

What would be the pH of the resulting solution?

$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ + $\mathrm{H}_{2} \mathrm{O}$ \Leftrightarrow $\mathrm{H}_{3} \mathrm{O}^{+}$ I 0.15 M 0 $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}$ C -x +x 0 E $0.15-\mathrm{x}$ x +x	
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]}$	$6.5 \times 10^{-5}=\frac{\mathrm{x}^{2}}{(0.15-\mathrm{x})}$

Note: Much larger pH change 4.13 -> 2.51 since no longer a buffer.

Example 7 - Determining acid/base ratio needed for buffer pH
When need to know either
(A) how much of one of the buffer components to add to produce a certain pH or
(B) what ratio of conjugate base to acid is needed to produce a certain pH , use Henderson-Hasselbalch equation.

How many grams of sodium benzoate $\left(\mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)$ must be added to 100 . mL of 0.13 M benzoic acid $\left(\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)$ to produce a buffer with a pH of 4.30 ?
$\mathrm{K}_{\mathrm{a}}=6.5 \times 10^{-5} \quad \mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}=-\log \left(6.5 \times 10^{-5}\right)=4.19$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right)$
$4.30=4.19+\log \left(\frac{[\text { base }]}{0.13 \mathrm{M}}\right)$
$\log \left(\frac{[\text { base }]}{0.13 \mathrm{M}}\right)=4.30-4.19=0.11$
$\frac{[\text { base] }}{0.13 \mathrm{M}}=10^{0.11}=1.3 \quad$ So ratio of [base] must be $1.3 \times$ [acid].
[base] $=\left[\mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]=1.3 \times 0.13 \mathrm{M}=0.17 \mathrm{M}$
$(0.100 \mathrm{~L})\left(\frac{0.17 \mathrm{~mol} \mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}{\mathrm{~L}}\right)\left(\frac{144.1 \mathrm{~g} \mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}\right)=2.4 \mathrm{~g} \mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$

Since need to prepare $100 . \mathrm{mL}$ of buffer at pH 4.30 , measure out $2.4 \mathrm{~g} \mathrm{NaC} \mathrm{N}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ and add 0.13 M acid $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ to total volume of 100 mL .

Blood Buffer System
$\mathrm{H}_{2} \mathrm{CO}_{3}$ conjugate acid (formed when blood gas $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$)
$\mathrm{Na}^{+} \mathrm{HCO}_{3}{ }^{-}$conjugate base
If add base:
$\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{NaOH} \quad->\mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+} \mathrm{HCO}_{3}^{-}$
If add acid:
$\mathrm{Na}^{+} \mathrm{HCO}_{3}^{-}+\mathrm{HCl} \quad->\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{Na}^{+} \mathrm{Cl}^{-}$

Cell Buffer System

$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$conjugate acid
$\mathrm{HPO}_{4}{ }^{2-}$ conjugate base
If add base:
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{NaOH} \quad->\mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+} \mathrm{HPO}_{4}{ }^{2}$
If add acid:
$\mathrm{HPO}_{4}{ }^{2-}+\mathrm{HCl} \quad->\quad \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{Cl}^{-}$

