Chapter 16: Buffer Calculations

Example 1 - Buffer Method 1
What is the pH of a buffer made by adding 4.68 g of sodium benzoate $\left(\mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)$ to 250.0 mL of 0.15 M benzoic acid solution? $\mathrm{K}_{\mathrm{a}}=6.5 \times 10^{-5}$

Need concentration of the conjugate base benzoate ion $\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}\right)$:

$$
\begin{aligned}
& \left(4.68 \mathrm{~g} \mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}{144.1 \mathrm{~g} \mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}}{1 \mathrm{~mol} \mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}\right)=0.325 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-} \\
& {\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]=\frac{0.0325 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}}{0.25 \mathrm{~L}}=0.13 \mathrm{M} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}}
\end{aligned}
$$

| | $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ | + | $\mathrm{H}_{2} \mathrm{O}$ | \Leftrightarrow | $\mathrm{H}_{3} \mathrm{O}^{+}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |$+\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]}
$$

CHECK: Henderson - Hasselbalch Equation
If assume x is small compared to initial concentrations of acid and conjugate base, one can use the initial values of the acid and conjugate base for equilibrium concentrations.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
& {\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{a}}[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}} \\
& -\log \left[\mathrm{H}^{+}\right]=-\log \mathrm{K}_{\mathrm{a}}-\log \left(\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}\right) \\
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right) \\
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right) \\
& \mathrm{pH}=
\end{aligned}
$$

Example 2 - Buffer Method 2
What is the pH of a buffer made by adding 125 mL of $0.14 \mathrm{M} \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ solution with 165 mL of $0.16 \mathrm{M} \mathrm{NaC}{ }_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ solution? $\mathrm{K}_{\mathrm{a}}=6.5 \times 10^{-5}$

Need concentrations of the conjugate acid and base in the mixture.

	$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$	+	$\mathrm{H}_{2} \mathrm{O}$	\Leftrightarrow	$\mathrm{H}_{3} \mathrm{O}^{+}$	+
I			$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}$			
C					0	
E				x		

$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}\right]}{\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]}$
CHECK: $\quad \mathrm{pH}=p K_{a}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right)=$

Example 3 - Buffer Range
At what pH does buffer work best? Best buffer system when $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$
What is the range of a buffer? Buffer works within ± 1 of pK_{a} value so buffer $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}} \pm 1$
What is the buffer range of benzoic acid/benzoate buffer?
$\mathrm{pK}_{\mathrm{a}}=-\log \left(6.5 \times 10^{-5}\right)=4.19 \quad$ Buffer range $=4.19 \pm 1 \quad$ so $\quad 3.19$ to 5.19
What is the pH for best buffer capacity and what is the buffering range for each of the following?

Buffer components	pH best buffering capacity	Buffer range
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} / \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$		
$\mathrm{HClO}^{-} / \mathrm{ClO}^{-}$		
$\mathrm{HCO}_{3}^{-} / \mathrm{CO}_{3}{ }^{2-}$		
$\mathrm{HCHO}_{2} / \mathrm{CHO}_{2}^{-}$		
$\mathrm{NH}_{4}^{+} / \mathrm{NH}_{3}$		

Example 4 -Addition of base to buffer
What is the new pH if 5.0 mL of 0.50 M NaOH is added to 50.0 mL of benzoic acid-benzoate buffer from problem 1 ?
$\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]=0.15 \mathrm{M} \quad\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}\right]=0.13 \mathrm{M}$
First determine how much buffer reacts since NaOH is a strong base, NaOH will react 100% with the acid component of the buffer. MUST WORK STOICHIOMETRY IN MOLES.

$$
\begin{array}{lc}
\underset{0 \mathrm{~L} \times 0.15 \mathrm{M})}{\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}} \quad+\underset{(0.0050 \mathrm{~L} \times 0.50 \mathrm{M})}{\mathrm{NaOH}} \rightarrow \quad \mathrm{H}_{2} \mathrm{O} & +\underset{(0.0500 \mathrm{~L} \times 0.13 \mathrm{M})}{\mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}
\end{array}
$$

Initial mol
Reaction
Final mol
Note: Must divide by the total volume before entering new values into ICE chart.
Total volume $=50.0 \mathrm{~mL}+5.0 \mathrm{~mL}=55.0 \mathrm{~mL}$ or 0.0550 L
$\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]=\quad\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]=$

	$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$	+	$\mathrm{H}_{2} \mathrm{O}$	\Leftrightarrow	$\mathrm{H}_{3} \mathrm{O}^{+}$
I			0		
C			$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}$		
E				$+x$	

$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]}$
CHECK: $\quad \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right)=$

Example 5 -Addition of acid to buffer
What is the new pH if 10.0 mL of 0.15 M HCl was added to 50.0 mL of benzoic acid-benzoate buffer from problem 1 ?
$\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]=0.15 \mathrm{M} \quad\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}\right]=0.13 \mathrm{M}$
First determine how much buffer reacts since HCl is a strong acid, HCl will react 100% with the base component of the buffer. MUST WORK STOICHIOMETRY IN MOLES.

$$
\left.\underset{(0.010 \mathrm{~L} \times 0.15 \mathrm{M})}{\mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}} \quad \rightarrow 0.13 \mathrm{M}\right) \quad \rightarrow \underset{(0.0500 \mathrm{~L} \times 0.15 \mathrm{M})}{\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}+\mathrm{NaCl}
$$

Initial mol
Reaction
Final mol

Note: Must divide by the total volume before entering new values into ICE chart.
Total volume =

I		$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$	+	$\mathrm{H}_{2} \mathrm{O}$	\Leftrightarrow	$\mathrm{H}_{3} \mathrm{O}^{+}$		
C					+	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}$		
E					+x			

$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]}$

CHECK: $\quad \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right)=$

Example 6 - Depleting buffer
How much of the 0.15 M HCl would have to be added to 50.0 mL of the benzoic acid/benzoate buffer to deplete it completely?
$\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]=0.15 \mathrm{M} \quad\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}\right]=0.13 \mathrm{M}$

Since an acid added to a buffer will act with the conjugate base, determine how much acid will be required to react with 50.0 mL of $0.13 \mathrm{M} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}$.

Buffer would be depleted when \qquad mL of 0.15 M HCl has been added.
At this point only acid $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ remains. Note: can NOT use Henderson-Hasselbalch equation since NO longer a buffer.
$\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]=\frac{\mathrm{mol}}{\mathrm{L}}=$
Volume $=50 . \mathrm{mL}$ \qquad $\mathrm{mL}=$

	$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$	+	$\mathrm{H}_{2} \mathrm{O}$	\Leftrightarrow	$\mathrm{H}_{3} \mathrm{O}^{+}$
I			0		
C			$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}$		
E				+x	

$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]}$

Likewise, similar calculation can be done for depletion of acid component of buffer.

Example 7 - Determining acid/base ratio needed for buffer pH
When need to know either
(A) how much of one of the buffer components to add to produce a certain pH or (B) what ratio of conjugate base to acid is needed to produce a certain pH , use Henderson-Hasselbalch equation.

How many grams of sodium benzoate $\left(\mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)$ must be added to 100 . mL of 0.13 M benzoic acid $\left(\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)$ to produce a buffer with a pH of 4.30 ?
$\mathrm{K}_{\mathrm{a}}=6.5 \times 10^{-5} \quad \mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}=-\log \left(6.5 \times 10^{-5}\right)=4.19$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right) \quad$ Calculate concentration of base needed to produce pH of 4.30.

Then what mass of base $\mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ is needed to produce desired concentration in 100. mL volume?

To prepare 100. mL of buffer at pH 4.30 , measure out \qquad $\mathrm{g} \mathrm{NaC} \mathrm{F}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ and add 0.13 M acid $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ to total volume of 100 mL .

Blood Buffer System
$\mathrm{H}_{2} \mathrm{CO}_{3}$ conjugate acid (formed when blood gas $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$)
$\mathrm{Na}^{+} \mathrm{HCO}_{3}{ }^{-}$conjugate base
If add base:
$\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{NaOH} \quad->\mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+} \mathrm{HCO}_{3}^{-}$
If add acid:
$\mathrm{Na}^{+} \mathrm{HCO}_{3}^{-}+\mathrm{HCl} \quad->\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{Na}^{+} \mathrm{Cl}^{-}$

Cell Buffer System
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$conjugate acid
$\mathrm{HPO}_{4}{ }^{2-}$ conjugate base
If add base:
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{NaOH} \quad->\mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+} \mathrm{HPO}_{4}{ }^{2}$
If add acid:
$\mathrm{HPO}_{4}{ }^{2-}+\mathrm{HCl} \quad->\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{Cl}^{-}$

