## Chapter 15 Weak Acids \& Bases

Equilibrium Expression for Acids
In general terms, the reaction is:
$\mathrm{HA} \quad+\quad \mathrm{H}_{2} \mathrm{O} \quad<=>\quad \mathrm{H}_{3} \mathrm{O}^{+} \quad+\quad \mathrm{A}^{-}$
Weak Bronsted acid
Conjugate base

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{HA}]} \\
& \mathrm{K}_{\mathrm{c}}\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{aligned}
$$

Sometimes reaction is shortened to: $\mathrm{HA}<\mathrm{H}^{+}+\mathrm{A}^{-}$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

Better way to classify acid strength is by $\mathrm{K}_{\mathrm{a}}$.
$\mathrm{K}_{\mathrm{a}}<10^{-3} \quad$ Weak acid
$\mathrm{K}_{\mathrm{a}}=1$ to $10^{-3} \quad$ Moderate acid
$\mathrm{K}_{\mathrm{a}}>1 \quad$ Strong acid

For the general reaction of
HA $\quad+\quad \mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$
Bronsted acid Conjugate base
the "A" denotes any acid; that is, particle with ability to donate a proton, so "A" could be:
Examples:
neutral molecule
positive ion

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}
$$

negative ion
$\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NH}_{3}$
$\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}{ }^{2-}$
The stronger the acid, the weaker is the conjugate base and vice-versa.

Example 1:
Lactic acid $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}\right)$ is a weak monoprotic acid. Determine the $\mathrm{K}_{\mathrm{a}}$ for lactic acid if a 0.10 M solution of the acid has a pH of 2.43 .

Steps to filling in ICE chart:
(A) Concentration of acid is the initial concentration (HA).
(B) Pure water has an initial concentration of $1.0 \times 10^{-7} \mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+}$and $1.0 \times 10^{-7} \mathrm{M} \mathrm{OH}^{-}$but generally this value is so small relative to amount produced by acid or base that considered negligible. However, NOT negligible in very dilute solutions.
(C) pH values are equilibrium concentrations.

|  | $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$ | + | $\mathrm{H}_{2} \mathrm{O}$ | $\Leftrightarrow$ | $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}{ }^{-}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| I | 0.10 M |  |  | $\mathrm{H}_{3} \mathrm{O}^{+}$ |  |
| C | -x |  |  | 0 | $\sim 0$ |
| E | $0.10-\mathrm{x}$ |  |  | x | +x |

$$
\begin{aligned}
\mathrm{pH} & =2.43 \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}} } & =10^{-2.43}=0.0037 \mathrm{M}
\end{aligned}
$$

$$
\text { so } x=0.0037 \mathrm{M}
$$

$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}\right]}$
$\mathrm{K}_{\mathrm{a}}=\frac{\mathrm{x}^{2}}{(0.10-\mathrm{x})}=\frac{(0.0037)^{2}}{(0.10-0.0037)}=1.4 \times 10^{-4}$

## Example 2:

Calculate the $\mathrm{pH}, \%$ ionization, and the concentrations of all species ( $\mathrm{HF}, \mathrm{F}^{-}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{OH}^{-}$) present in 0.050 M HF solution. $\mathrm{K}_{\mathrm{a}}=3.5 \times 10^{-4}$

|  | $\mathrm{HF} \quad+\quad \mathrm{H}_{2} \mathrm{O}$ | $\Leftrightarrow$ | $\mathrm{F}^{-}$ | + | $\mathrm{H}_{3} \mathrm{O}^{+}$ |
| :---: | :--- | :--- | :--- | :--- | :--- |
| I | 0.050 M |  | 0 | $\sim 0$ |  |
| C | -x |  | +x | +x |  |
| E | $0.050-\mathrm{x}$ |  | x | x |  |

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{F}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HF}]} \\
& 3.5 \times 10^{-4}=\frac{\mathrm{x}^{2}}{(0.050-\mathrm{x})} \\
& 0=\frac{\mathrm{x}^{2}}{(0.050-\mathrm{x})}-3.5 \times 10^{-4} \quad \text { Window } \mathrm{x}=0 \text { to } 0.050
\end{aligned}
$$

Intersection
$\mathrm{x}=0.0040 \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{F}^{-}\right]=\mathrm{x}=0.0040 \mathrm{M}$
$[\mathrm{HF}]=0.050-\mathrm{x}=0.050 \mathrm{M}-0.0040 \mathrm{M}=0.046 \mathrm{M}$
$\mathrm{pH}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=-\log (\mathrm{x})=-\log (0.0040)=2.40$
$\mathrm{pOH}=14.00-\mathrm{pH}=14.00-2.40=11.60$
$\%$ ionization $=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HF}]_{\text {INTTAL }}}=\frac{\mathrm{x}}{[\mathrm{HF}]}=\frac{0.0040 \mathrm{M}}{0.050 \mathrm{M}} \times 100=8.0 \%$

Calculations - Weak Base Equilibria
Calculate the pH of a $0.015 \mathrm{M} \mathrm{NH}_{3}$ solution. $\quad \mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})<\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

|  | $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$ | $\Leftrightarrow$ | $\mathrm{NH}_{4}{ }^{+}$ | + |
| :---: | :--- | :---: | :---: | :---: |
| I | 0.015 M |  | 0 | $\sim 0$ |
| C | -x |  |  | +x |
| E | $0.015-\mathrm{x}$ |  | x | +x |

$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}$
$1.8 \times 10^{-5}=\frac{\mathrm{x}^{2}}{(0.015-\mathrm{x})}$
$0=\frac{\mathrm{x}^{2}}{(0.015-\mathrm{x})}-1.8 \times 10^{-5} \quad$ Window $\mathrm{x}=0$ to 0.015

Intersection
$\mathrm{x}=5.1 \times 10^{-4} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=\mathrm{x}=5.1 \times 10^{-4} \mathrm{M}$
$\mathrm{pOH}=-\log \left(\left[\mathrm{OH}^{-}\right]\right)=-\log (\mathrm{x})=-\log \left(5.1 \times 10^{-4}\right)=3.29$
$\mathrm{pH}=14.00-\mathrm{pOH}=14.00-3.29=10.71$

Calculations - Weak Acid/Base Equilibria
pH of a salt solution
Calculate the pH of a 0.15 M KCN solution.

| $\mathrm{K}^{+}$ | $\mathrm{CN}^{-}$ |
| :---: | :---: |
| A | B |

$\mathrm{CN}^{-}$is the conjugate base of the weak acid $\mathrm{HCN} . \mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-10}$
$\mathrm{K}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}=\frac{1.0 \times 10^{-14}}{6.2 \times 10^{-10}}=1.6 \times 10^{-5}$

|  | $\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O}$ | $\Leftrightarrow$ | HCN | + |
| :---: | :---: | :---: | :---: | :---: |
| O | 0.15 M |  | 0 | $\sim 0$ |
| C | -x |  |  | +x |
| E | $0.15-\mathrm{x}$ |  |  | x |

$\mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HCN}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CN}^{-}\right]}$
$1.6 \times 10^{-5}=\frac{\mathrm{x}^{2}}{(0.15-\mathrm{x})}$
$0=\frac{x^{2}}{(0.15-x)}-1.6 \times 10^{-5} \quad$ Window $x=0$ to 0.15

Intersection
$\mathrm{x}=0.0015 \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=\mathrm{x}=0.0015 \mathrm{M}$
$\mathrm{pOH}=-\log \left(\left[\mathrm{OH}^{-}\right]\right)=-\log (\mathrm{x})=-\log (0.0015)=2.81$
$\mathrm{pH}=14.00-\mathrm{pOH}=14.00-2.81=11.19$

