Chapter 15 Weak Acids & Bases

Equilibrium Expression for Acids

In general terms, the reaction is:

 $\begin{array}{ccccccc} HA & + & H_2O & <=> & H_3O^+ & + & A^-\\ Weak Bronsted acid & & & & Conjugate base \end{array}$

$$K_{c} = \frac{\left[H_{3}O^{+}\right]\left[A^{-}\right]}{\left[H_{2}O\right]\left[HA\right]}$$
$$K_{c}\left[H_{2}O\right] = \frac{\left[H_{3}O^{+}\right]\left[A^{-}\right]}{\left[HA\right]}$$
$$K_{a} = \frac{\left[H_{3}O^{+}\right]\left[A^{-}\right]}{\left[HA\right]}$$

Sometimes reaction is shortened to: HA $\leq H^+ + A^-$

$$\mathbf{K}_{\mathbf{a}} = \frac{\left[\mathbf{H}^{+}\right]\left[\mathbf{A}^{-}\right]}{\left[\mathbf{H}\mathbf{A}\right]}$$

 $\begin{array}{ll} \mbox{Better way to classify acid strength is by K_a.}\\ \mbox{$K_a < 10^{-3}$} & \mbox{Weak acid}\\ \mbox{$K_a = 1$ to 10^{-3}} & \mbox{Moderate acid}\\ \mbox{$K_a > 1$} & \mbox{Strong acid} \end{array}$

For the general reaction of $HA + H_2O \iff H_3O^+ + A^-$ Bronsted acid Conjugate base

the "A" denotes any acid; that is, particle with ability to donate a proton, so "A" could be:

Examples:

neutral molecule $HC_2H_3O_2 + H_2O \Leftrightarrow H_3O^+ + C_2H_3O_2^$ positive ion $NH_4^+ + H_2O \Leftrightarrow H_3O^+ + NH_3$ negative ion $HSO_4^- + H_2O \Leftrightarrow H_3O^+ + SO_4^{2-}$

The stronger the acid, the weaker is the conjugate base and vice-versa.

Calculations - Weak Acid Equilibria

Example 1:

Lactic acid $(C_3H_6O_3)$ is a weak monoprotic acid. Determine the K_a for lactic acid if a 0.10M solution of the acid has a pH of 2.43.

Steps to filling in ICE chart:

- (A) Concentration of acid is the initial concentration (HA).
- (B) Pure water has an initial concentration of $1.0 \times 10^{-7} M H_3 O^+$ and $1.0 \times 10^{-7} M OH^-$ but generally this value is so small relative to amount produced by acid or base that considered negligible. However, NOT negligible in very dilute solutions.
- (C) pH values are equilibrium concentrations.

	$C_3H_6O_3$	+	H ₂ O	\Leftrightarrow	$C_3H_5O_3^-$	$+$ H_3O^+	
Ι	0.10 M				0	~ 0	
С	- X				+ x	+ x	
Е	0.10 - x				Х	$x = 10^{-pH}$	

$$pH = 2.43$$

 $[H_3O^+] = 10^{-pH} = 10^{-2.43} = 0.0037 \text{ M}$
so x = 0.0037 M

$$K_{a} = \frac{[C_{3}H_{5}O_{3}^{-}][H_{3}O^{+}]}{[C_{3}H_{6}O_{3}]}$$
$$K_{a} = \frac{x^{2}}{(0.10-x)} = \frac{(0.0037)^{2}}{(0.10-0.0037)} = 1.4x10^{-4}$$

Example 2:

Calculate the pH, % ionization, and the concentrations of all species (HF, F⁻, H₃O⁺, OH⁻) present in 0.050M HF solution. $K_a = 3.5 \times 10^{-4}$

	$HF + H_2O <$	F- +	H_3O^+
Ι	0.050 M	0	~ 0
С	- x	+ x	+ x
Е	0.050 - x	X	Х

$$K_{a} = \frac{[F^{-}][H_{3}O^{+}]}{[HF]}$$

3.5 x 10⁻⁴ = $\frac{x^{2}}{(0.050-x)}$
$$0 = \frac{x^{2}}{(0.050-x)} - 3.5 \times 10^{-4}$$
 Window x= 0 to 0.050

Intersection x = 0.0040 M

$$[H_{3}O^{+}] = [F^{-}] = x = 0.0040 \text{ M}$$

$$[HF] = 0.050 - x = 0.050 \text{ M} - 0.0040 \text{ M} = 0.046 \text{ M}$$

$$pH = -\log ([H_{3}O^{+}]) = -\log(x) = -\log(0.0040) = 2.40$$

$$pOH = 14.00 - pH = 14.00 - 2.40 = 11.60$$

% ionization = $\frac{[H_{3}O^{+}]}{[HF]_{INITIAL}} = \frac{x}{[HF]} = \frac{0.0040 \text{ M}}{0.050 \text{ M}} \times 100 = 8.0\%$

Calculations - Weak Base Equilibria

Calculate the pH of a 0.015M NH₃ solution. $K_b = 1.8 \times 10^{-5}$ NH₃ (aq) + H₂O (l) $\leq NH_4^+$ (aq) + OH⁻ (aq)

	$NH_3 + H_2O$	⇔ NH	. +	
Ι	0.015 M	0	~ 0	
С	- x	+ x	+ x	
E	0.015 - x	X	X	

$$K_{b} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}$$

1.8 x 10⁻⁵ = $\frac{x^{2}}{(0.015-x)}$
0 = $\frac{x^{2}}{(0.015-x)} - 1.8 \times 10^{-5}$ Window x= 0 to 0.015

Intersection $x = 5.1 \times 10^{-4} M$

 $[OH^{-}] = x = 5.1 \times 10^{-4} M$ pOH = -log ([OH⁻]) = -log(x) = -log(5.1 x 10^{-4}) = 3.29 pH = 14.00 - pOH = 14.00 - 3.29 = 10.71 Calculations - Weak Acid/Base Equilibria

pH of a salt solution

Calculate the pH of a 0.15 M KCN solution.

K^+	CN^{-}		
A	В		

 CN^{-} is the conjugate base of the weak acid HCN. $K_a = 6.2 \times 10^{-10}$

$$K_b = \frac{K_w}{K_a} = \frac{1.0 \text{ x } 10^{-14}}{6.2 \text{ x } 10^{-10}} = 1.6 \text{ x } 10^{-5}$$

	CN ⁻ +	H ₂ O ⇔	HCN	+ OH ⁻	
Ι	0.15 M		0	~ 0	
С	- X		+ x	+ x	
Е	0.15 - x		X	X	

$$K_{b} = \frac{[\text{HCN}][\text{OH}^{-}]}{[\text{CN}^{-}]}$$

1.6 x 10⁻⁵ = $\frac{x^{2}}{(0.15 - x)}$
0 = $\frac{x^{2}}{(0.15 - x)}$ - 1.6 x 10⁻⁵ Window x = 0 to 0.15

Intersection x = 0.0015 M

 $[OH^{-}] = x = 0.0015 M$

 $pOH = -log ([OH^{-}]) = -log(x) = -log(0.0015) = 2.81$ pH = 14.00 - pOH = 14.00 - 2.81 = 11.19