CHAPTER 15 ACIDS & BASES

Acid Base Definitions - Arrhenius vs Bronsted-Lowry

Arrhenius – Aqueous solutions only

Acid: Substance contains hydrogen and dissociates to form H₃O⁺ in water

Base: Substance contains hydroxide group and dissociates to form OH in water

Bronsted-Lowry – Any solvent, even gas

Acid: Proton (H⁺) donor Base: Proton acceptor

Any substance that is an Arrhenius acid is an Bronsted-Lowry acid. Likewise, any Arrhenius base is a Bronsted-Lowry base.

Much Broader Range

$$HCl$$
 + H_2O <=> H_3O^+ + Cl^- Acid Base Conjugate Conjugate acid of H_2O base of HCl NH_3 + H_2O <=> NH_4^+ + OH^-

Label conjugate acid-base pairs and predict direction of reaction (that is, which way equilibrium lies)

The stronger the acid, the weaker is the conjugate base and vice-versa.

Dissociation of Water

Water acts as both Bronsted-Lowry acid & base $H_2O + H_2O \iff H_3O^+ + OH^-$

But water is pure liquid so [H₂O]² is combined with K_c yielding K_w.

$$K_c [H_2O]^2 = [H_3O^+][OH^-]$$

 $K_w = [H_3O^+][OH^-]$

At 25°C $K_w = 1.0 \times 10^{-14}$ So in neutral water $[H_3O^+] = [OH^-] = x$ (same) $[H_3O^+][OH^-] = K_w$ $(x)(x) = 1.0 \times 10^{-14}$ $x^2 = 1.0 \times 10^{-14}$ $x = [H_3O^+] = [OH^-] = 1.0 \times 10^{-7} \text{ M}$

Definitions

$$\begin{array}{lll} \mbox{Neutral} & => & [\mbox{H_3O^+}] = [\mbox{OH^-}] \\ \mbox{Acid} & => & [\mbox{H_3O^+}] > [\mbox{OH^-}] \\ \mbox{Base} & => & [\mbox{H_3O^+}] < [\mbox{OH^-}] \\ \mbox{$pH = -\log[\mbox{$H_3O^+$}] = 10^{-pH}$} \\ \mbox{$pOH = -\log[\mbox{$OH^-$}] = 10^{-pOH}$} \\ \mbox{$pK_w = -\log K_w$} & K_w = 10^{-Kw} \end{array}$$

At 25°C, neutral pH =
$$-\log(1.0 \times 10^{-7} \text{M}) = 7.00$$

pOH= $-\log(1.0 \times 10^{-7} \text{M}) = 7.00$

Relationships between pH and pOH

$$[H_3O^+][OH^-] = K_w$$

$$log[H_3O^+] + log[H_3O^+] = log K_w$$

$$-log[H_3O^+] + -log[H_3O^+] = -log K_w$$

$$pH + pOH = pK_w$$

At 25°C,
$$K_w = 1.0 \times 10^{-14}$$

so $pK_w = -log(1.0 \times 10^{-14}) = 14.00$

$$pH + pOH = 14.00$$

Is pure water always 7? K values change with temperature.

At 100°C, $K_w = 5.5 \times 10^{-13}$ So if pH scale had been set at 100 °C:

$$[H_3O^+][OH^-] = K_w = 5.5 \times 10^{-13}$$

At 100°C, $K_w = 5.5 \times 10^{-13}$ So if pH scale had been set at 100 °C:

$$[H_3O^+][OH^-] = K_w = 5.5 \times 10^{-13}$$

Neutral pH (x) (x) =
$$5.5 \times 10^{-13}$$

 $x = [H_3O^+] = [OH^-] = 7.4 \times 10^{-7}M$

$$pH = pOH = -log(7.4 \times 10^{-7}M) = 6.13$$

At
$$100^{\circ}$$
C, pH + pOH = pK_w = 12.26

Strong Acids and Bases

Strong Acids have large K_a. Include HCl, HBr, HI, HNO₃, HClO₄, and H₂SO₄ (first H⁺)

Strong bases are soluble hydroxides of groups 1A and 2A.

Include LiOH, NaOH, KOH, LiOH, RbOH, CsOH, Ca(OH)₂, Ba(OH)₂, and Sr(OH)₂

Calculation of pH of strong acids and bases

What is the pH of the following solutions? 0.15M HBr, 0.20M KOH, and 0.015M Ba(OH)₂

For strong acids,

 $[H_3O^+]$ = [acid] since 100% ionized.

Strong acid 100% Note: HA = acid

 $HA + H_2O -> H_3O^+ + A^-$

 $0.15M \text{ HBr} => [H_3O^+] = 0.15 \text{ M}$

$$pH = -log[H_3O^+] = -log(0.15) = 0.82$$

Likewise for strong bases, 100% dissociation.

$$KOH(s) \rightarrow K^+(aq) + OH^-(aq)$$

$$0.20M \text{ KOH} => [OH^-] = 0.20 \text{ M}$$

$$pOH = -log[OH^-] = -log(0.20) = 0.70$$

At
$$25^{\circ}$$
C, pH + pOH = 14.00

At
$$25^{\circ}$$
C, pH + pOH = 14.00
so pH = $14.00 - \text{pOH} = 14.00 - 0.70 = 13.30$

What's different about the 0.015M Ba(OH)₂ solution?

$$[OH^{-}] = 2 \times 0.015 M = 0.030 M$$

$$pOH = -log(0.030) = 1.52$$

so pH =
$$14.00 - pOH = 14.00 - 1.52 = 12.48$$