Equilibrium Calculations

Example:

At $227^{\circ} \mathrm{C}$, the equilibrium constant for the reaction $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad$ is 6.9×10^{5}.
If at equilibrium there is $1.0 \times 10^{-3} \mathrm{M} \mathrm{O}_{2}$ and $5.0 \times 10^{-2} \mathrm{M} \mathrm{NO}_{2}$, what is the concentration of NO ?
$\mathrm{K}_{\mathrm{c}}=\frac{\mathrm{NO}_{2} \mathrm{~B}^{2}}{\mathrm{NO} \mathrm{NO}^{2} \mathrm{O}_{2} \mathrm{~B}}$
$\mathrm{NO}_{\mathrm{G}} \mathrm{E}^{2}=\frac{-\mathrm{NO}_{2} \mathrm{~B}^{2}}{\mathrm{~K}_{\mathrm{c}} \mathrm{O}_{2} \mathrm{~B}}$
$\mathrm{NO}=\sqrt{\frac{\mathrm{NO}_{2} \mathrm{Z}^{2}}{\mathrm{~K}_{\mathrm{c}} \mathrm{O}_{2} \mathrm{~B}}}=\sqrt{\frac{\left(5.0 \times 10^{-2}\right)^{2}}{\left(6.9 \times 10^{5}\right)\left(1.0 \times 10^{-3}\right)}}$
NOB $= \pm 1.9 \times 10^{-3} \mathrm{M} \quad$ correct value is $+1.9 \times 10{ }^{\square 3} \mathrm{M}$ Check
$\mathrm{K}_{\mathrm{c}}=\frac{\mathrm{NO}_{2} \|^{2}}{\| \mathrm{NO}^{2} \mathrm{OO}_{2} \square}=\frac{\left(5.0 \times 10^{-2}\right)^{2}}{\left(1.9 \times 10^{-3}\right)^{2}\left(1.0 \times 10^{-3}\right)}=6.9 \times 10^{5}$

USING "ICE" CHARTS

Example 1:
At 715 K , the equilibrium constant for the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$ is 55.0 . If $2.00 \mathrm{~mol} \mathrm{H}_{2}$ and $2.00 \mathrm{~mol}_{2}$ are allowed to react in a 20.0 L vessel, what are the equilibrium concentrations of all species?
The initial concentrations of H_{2} and I_{2} are:
$\left[\mathrm{H}_{2}\right]_{0}=\left[\mathrm{I}_{2}\right]_{0}=\frac{2.00 \mathrm{~mol}}{20.0 \mathrm{~L}}=0.100 \mathrm{M}$

	$\mathrm{H}_{2}(\mathrm{~g})$	+	$\mathrm{I}_{2}(\mathrm{~g})$	\Leftrightarrow
I	0.100	0.100		$2 \mathrm{HI}(\mathrm{g})$
C	-x	-x		+2 x
E	$0.100-\mathrm{x}$	$0.100-\mathrm{x}$		2 x

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{c}}=55.0=\frac{\mathrm{HHO}^{2}}{\sqrt[H]{H} H_{2} H_{2}}=\frac{(2 \mathrm{x})^{2}}{(0.100-\mathrm{x})(0.100-\mathrm{x})} \\
& 55.0=\frac{(2 \mathrm{x})^{2}}{(0.100-\mathrm{x})^{2}} \\
& \sqrt{55.0}=\sqrt{\frac{(2 \mathrm{x})^{2}}{(0.100-\mathrm{x})^{2}}} \\
& \pm 7.42=\frac{2 \mathrm{x}}{0.100-\mathrm{x}} \quad \text { Perfect square } \\
& +7.42(0.100-\mathrm{x})=2 \mathrm{x} \\
& 0.742-7.42 \mathrm{x}=2 \mathrm{x} \\
& 0.742=9.42 \mathrm{x} \\
& \mathrm{x}=\frac{0.742}{9.55}=0.0788 \mathrm{M}
\end{aligned}
$$

The correct root is 0.0788 M since $0.137 \mathrm{M}>0.100 \mathrm{M}$, the initial concentration.
$\left[\mathrm{H}_{2}\right]=\left[\mathrm{I}_{2}\right]=0.100-\mathrm{x}=0.100 \mathrm{M}-0.0788 \mathrm{M}=0.021 \mathrm{M}$
$[\mathrm{HI}]=2 \mathrm{x}=2(0.0788 \mathrm{M})=0.158 \mathrm{M}$
Check

$$
\mathrm{K}_{\mathrm{c}}=\frac{\mathrm{HIG}^{2}}{\mathrm{H}_{2} \mathrm{HI}_{2} \mathrm{Z}}=\frac{(0.158)^{2}}{(0.021)(0.021)}=55.3
$$

Example 2:
Vinegar, which contains acetic acid, is a weak acid; thus, it only partially ionizes in water.

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \Leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})
$$

What is the value of K_{c} if the extent of ionization in 1.0 M $\mathrm{CH}_{3} \mathrm{COOH}$ solution is 0.42%.
$\%$ Ionization $=\frac{\text { amount reacted }}{\text { initial amount }}=\frac{\mathrm{x}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{0}}$
$\mathrm{x}=\%$ Ionization $\mathrm{x}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{0}=0.0042 \times 1.0 \mathrm{M}=0.0042 \mathrm{M}$

| | $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \Leftrightarrow$ | $\mathrm{H}^{+}(\mathrm{aq})$ | $+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$ |
| :---: | :---: | :---: | :---: | :---: |
| I | 1.0 | 0 | 0 |
| C | -x | +x | +x |
| E | $1.0-\mathrm{x}$ | x | $\mathrm{x}=0.0042$ |

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{c}}=\frac{{ }^{-\mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{Z}}}{\frac{\mathrm{CH}_{3} \mathrm{COOH}^{-}}{-1}}=\frac{(\mathrm{x})(\mathrm{x})}{(1.0-\mathrm{x})}=\frac{(0.0042)(0.0042)}{(1.0-0.0042)} \\
& \mathrm{K}_{\mathrm{c}}=1.8 \times 10^{-5}
\end{aligned}
$$

Example 3:
For the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$, if the initial concentration of $\mathrm{H}_{2}(\mathrm{~g})$ is 0.100 M and that of $\mathrm{I}_{2}(\mathrm{~g})$ is 0.200 M , what are the equilibrium concentrations of all species?
At 715 K the $\mathrm{K}_{\mathrm{c}}=55.0$.

	$\mathrm{H}_{2}(\mathrm{~g})$	+	$\mathrm{I}_{2}(\mathrm{~g})$	\Leftrightarrow
I	0.100	0.200		$2 \mathrm{HI}(\mathrm{g})$
C	-x	-x		+2 x
E	$0.100-\mathrm{x}$	$0.200-\mathrm{x}$		2 x

$$
\mathrm{K}_{\mathrm{c}}=55.0=\frac{\mathrm{HHI}^{2}}{\underset{\mathrm{H}_{2} \mathrm{HI}_{2} \mathrm{H}^{2}}{\mathrm{H}}}=\frac{(2 \mathrm{x})^{2}}{(0.100-\mathrm{x})(0.200-\mathrm{x})}
$$

Since this is NOT a perfect square, the quadratic formula must be used to solve for x. First step is to get relationship in correct form of $a x^{2}+b x+c=0$.
$55.0(0.100-\mathrm{x})(0.200-\mathrm{x})=4 \mathrm{x}^{2}$
$55.0\left(0.0200-0.300 x+x^{2}\right)=4 x^{2}$
$1.10-16.5 x+55.0 x^{2}=4 x^{2}$
$51.0 x^{2}-16.5 x+1.10=0$
Using $\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$x=\frac{-(-16.5) \pm \sqrt{(-16.5)^{2}-4(51.0)(1.10)}}{2(51.0)}=\frac{16.5 \pm 6.92}{102}$

Roots are $\mathrm{x}=0.230 \mathrm{M}$ and 0.0939 M . The first root is ignored because $0.230 \mathrm{M}>0.100 \mathrm{M}$ initial concentration.

$$
\begin{aligned}
& {\left[\mathrm{H}_{2}\right]=0.100-\mathrm{x}=0.100 \mathrm{M}-0.0939 \mathrm{M}=0.006 \mathrm{M}} \\
& {\left[\mathrm{I}_{2}\right]=0.200-\mathrm{x}=0.200 \mathrm{M}-0.0939 \mathrm{M}=0.106 \mathrm{M}} \\
& {[\mathrm{HI}]=2 \mathrm{x}=2(0.0939 \mathrm{M})=0.188 \mathrm{M}}
\end{aligned}
$$

Check

$$
K_{c}=\frac{\mathrm{HI}^{2}}{H_{2} \#_{2} B_{2}}=\frac{(0.188)^{2}}{(0.006)(0.106)}=55.6
$$

Off slightly because only one sig. Fig. for H_{2} concentration.
Another way to solve is to find the roots using calculator.
$\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\stackrel{-\mathrm{H}_{2} Ш_{2}}{ } \mathrm{H}_{2}}$
$55.0=\frac{(2 \mathrm{x})^{2}}{(0.100-\mathrm{x})(0.200-\mathrm{x})}$
$0=\frac{4 x^{2}}{(0.100-\mathrm{x})(0.200-\mathrm{x})}-55.0$
Make sure $\mathrm{Y}=$ screen is clear and Plots are off.
Plug into $\mathrm{Y}=$ screen.
$\mathrm{Y}_{1}=\frac{4 \mathrm{x}^{2}}{(0.100-\mathrm{x})(0.200-\mathrm{x})}-55.0$
$\mathrm{Y} 2=0$
Set window for Xmin, Xmax, Ymin, and Ymax.
$\mathrm{Xmin}=0$ and $\mathrm{Xmax}=0.100$. Why?
Ymin should be negative value and Ymax positive. For example $Y \min =-5$ and $Y \max =5$.

Solving for intersection yields $\mathrm{x}=0.0939$ M.

