SOLUBILITY OF A SLIGHTLY SOLUBLE SALT

One important example of heterogeneous equilibria is the solubility of a slightly soluble salt. The equilibrium expression for this is termed the **solubility product**, K_{SP} .

For example, the compound, $Mg(OH)_2$, has the following equilibrium.

 $\begin{array}{l} Mg(OH)_2(s) \Leftrightarrow Mg^{2+}(aq) + 2OH^{-}(aq) \\ K_{SP} = [Mg^{2+}][OH^{-}]^2 \end{array}$

Solubility values are for saturated solutions and thus are equilibrium values. Solubilities are generally provided in units of g/100 mL solution or in terms of molarity (termed **molar solubility**).

Example1: Calculate the K_{SP} for Mg(OH)₂ if at 25°C the solubility is 9.3 x 10⁻⁴ g/100mL.

First, the **molar solubility** must be calculated.

 $\left(\frac{9.3 \times 10^{-4} \text{g Mg(OH)}_2}{100 \text{ mL}}\right) \left(\frac{1 \text{ mol Mg(OH)}_2}{58.31 \text{g Mg(OH)}_2}\right) \left(\frac{1000 \text{ mL}}{1 \text{L}}\right) = 1.6 \times 10^{-4} \frac{\text{mol}}{\text{L}} \text{ Mg(OH)}_2$

Second, an ICE chart and the solubility product equilibrium expression are set up.

	$Mg(OH)_2(s) \iff$	\rightarrow Mg ²⁺	+	20H ⁻
Ι		0		0
С		+X		+2x
E		Х		2x

$$\begin{array}{ll} K_{SP} &= [Mg^{2+}][OH^{-}]^2 \\ K_{SP} &= (x) \ (2x)^2 = \ 4x^3 \end{array}$$

x = change and thus the amount of Mg(OH)₂ that has dissolved to form Mg²⁺ and OH⁻ ions.

Thus:

 $x = molar solubility value = 1.6 \times 10^{-4} mol/L$

 $K_{SP} = 4x^3 = 4*(1.6 \text{ x } 10^{-4} \text{ M})^3 = 1.6 \text{ x } 10^{-11} \text{ M}^3$

The K_{SP} value for Mg(OH)₂ of 1.6 x 10⁻¹¹ agrees well with the text value of 1.8 x 10⁻¹¹. In a latter section, several reasons as to why the values may vary (within an order of magnitude) will be presented.

Example2: Calculate the molar solubility of AgBr at 25°C. $K_{SP} = 5.4 \times 10^{-13}$.

	AgBr(s)	\Leftrightarrow	Ag^+	+	Br ⁻
Ι			0		0
С	X		+X		+X
E			Х		Х

$$K_{SP} = [Ag^+][Br^-]$$

5.4 x 10⁻¹³ = x²
x = 7.3 x 10⁻⁷ M = molar solubility

 K_{sp} is a constant depending only upon temperature. Molar solubility, however, can be affected by other solution factors. One key factor is the "common ion effect."

In Example 1, the molar solubility for $Mg(OH)_2$ was given as 1.6 x 10⁻⁴ M in pure water. What is the molar solubility of $Mg(OH)_2$ in 0.10M $Mg(NO_3)_2$? $K_{SP} = 1.8 \times 10^{-11}$

	$Mg(OH)_2(s)$	\Leftrightarrow Mg ²⁺	+	20H ⁻
Ι		0.10M		0
С		+X		+2x
E		0.10 +x		2x

$$K_{SP} = [Mg^{2+}][OH^{-}]^{2}$$

1.8 x 10⁻¹¹ = (0.10 +x) (2x)²
x = 6.7 x 10⁻⁶ M

Much lower solubility.

The "common ion" Mg^{2+} decreases solubility. Does it make a difference if the common ion is the hydroxide?

What is the molar solubility of $Mg(OH)_2$ in a NaOH solution with a pH of 12.50?

pOH = 14.00 - 12.50 = 1.50 $[OH^{-}] = 10^{-1.50} = 3.2 \times 10^{-2}M$

	$Mg(OH)_2(s) \Leftrightarrow$	\Rightarrow Mg ²⁺	+	20H ⁻
Ι		0		$3.2 \text{ x } 10^{-2} \text{M}$
С		+X		+2x
E		X		$3.2 \times 10^{-2} + 2x$

$$K_{SP} = [Mg^{2+}][OH^{-}]^{2}$$

1.8 x 10⁻¹¹ = (x) (3.2 x 10⁻² + 2x)²
x = 1.8 x10⁻⁸ M Even lower solubility.

<u>Presence of either common ion shifts the equilibrium to the</u> <u>left so the solubility decreases</u>.

<u>The value calculated for the molar solubility using K_{SP}</u> <u>may vary significantly from the experimental value.</u>

Reasons for variations include the following.

- 1. In calculations, molar concentrations are used. In actuality, the correct form is "activity" which involves other experimental factors including charge.
- Complete dissociation of the ionic compound is assumed. This is not always true. For example, for Mg(OH)₂, the ions in solution may be Mg²⁺, OH⁻, MgOH⁺, and Mg(OH)₂.
- 3. Some salts hydrolyze in water. This is especially true of sulfides. Instead of the reaction $ZnS(s) \Leftrightarrow Zn^{2+} + S^{2-}$ the reaction is $ZnS(s) + H_2O \Leftrightarrow Zn^{2+} + OH^- + HS^-$ In fact HS⁻ is the major species because S²⁻ is the conjugate base of a **very weak acid** so S² + H₂O \Leftrightarrow OH⁻ + HS⁻ occurs to a significant extent.
- 4. pH affects the solubility of many compounds. For example, CaCO₃(s) + H₃O⁺ -> HCO₃⁻ + Ca²⁺ + H₂O
- 5. Complex ions form in some cases. $AgCl(s) \Leftrightarrow Ag^+ + Cl^ Ag^+ + 2Cl^- \Leftrightarrow AgCl^{2-}$

Complex Ion Formation

Example: AgCl is very soluble in ammonia because a complex ion is formed.

$$AgCl(s) \Leftrightarrow Ag^{+} + Cl^{-} \qquad K_{SP} = [Ag^{+}][Br^{-}]$$
$$\underline{Ag^{+} + 2NH_{3} \Leftrightarrow Ag(NH_{3})_{2}^{+}} \qquad K_{f} = \frac{\left[Ag(NH_{3})_{2}^{+}\right]}{\left[Ag^{+}\right]NH_{3}\right]^{2}}$$
$$Net: AgCl(s) + 2NH_{3} \Leftrightarrow Ag(NH_{3})_{2}^{+} + Cl^{-}$$

When the two equilibrium reactions are added together, the new equilibrium constant for the net reaction is determined by calculating the product of the two separate K values.

$$K_{\text{NET}} = K_{\text{SP}} * K_{\text{f}} = \left(\begin{bmatrix} \mathbf{Ag}^{+} \begin{bmatrix} \mathbf{CI}^{-} \end{bmatrix} \right) \frac{\begin{bmatrix} \mathbf{Ag}(\mathbf{NH}_{3})_{2}^{+} \end{bmatrix}}{\begin{bmatrix} \mathbf{Ag}^{+} \begin{bmatrix} \mathbf{NH}_{3} \end{bmatrix}^{2}}$$
$$K_{\text{NET}} = K_{\text{SP}} * K_{\text{f}} = \frac{\begin{bmatrix} \mathbf{CI}^{-} \begin{bmatrix} \mathbf{Ag}(\mathbf{NH}_{3})_{2}^{+} \end{bmatrix}}{\begin{bmatrix} \mathbf{NH}_{3} \end{bmatrix}^{2}}$$
$$K_{\text{NET}} = K_{\text{SP}} * K_{\text{f}} = (1.8 \times 10^{-10})(1.7 \times 10^{7}) = 3.1 \times 10^{-3}$$

Now use the new K value to detemine the solubility of AgCl in $0.50M \text{ NH}_3$.

	AgCl(s)	+ $2NH_3$	\Leftrightarrow Ag(NH ₃) ₂ ⁺ +	Cl ⁻
Ι		0.50 M	0	0
С	X	-2x	+X	+X
E		0.50-2x	Х	Х

$$K_{\text{NET}} = \frac{\left[\text{CI}^{-}\left[\text{Ag}(\text{NH}_{3})_{2}^{+}\right]}{\left[\text{NH}_{3}\right]^{2}}\right]}{\left[\text{NH}_{3}\right]^{2}}$$
$$3.1 \times 10^{-3} = \frac{(x)(x)}{(0.50 - 2x)^{2}}$$

 $x = 2.5 \ x \ 10^{-2} M$

So the molar solubility of AgCl is 2.5×10^{-2} M versus 1.3×10^{-5} M in pure water.

Using Q_{SP} to predict whether or not a precipitate will form.

If $Q_{SP} = K_{SP}$ the solution is saturated and in equilibrium. If $Q_{SP} > K_{SP}$ a precipitate will form (R<-P). If $Q_{SP} < K_{SP}$ still soluble so no precipitate.

Example:

The pH of a hard water sample have a magnesium ion concentration of 2.5 x 10^{-4} M is adjusted to 10.80. Will the magnesium ion precipitate as Mg(OH)₂? $K_{SP} = 1.8 \times 10^{-11}$ for Mg(OH)₂

To check, determine the $Q_{SP.}$ $[Mg^{2+}] = 2.5 \times 10^{-4} M$ $[OH^{-}] = 10^{-3.20} = 6.3 \times 10^{-4} M$ since pOH = 14.00 – pH $Q_{SP} = [Mg^{2+}][OH^{-}]^{2} = (2.5 \times 10^{-4} M)(6.3 \times 10^{-4} M)^{2}$ $Q_{SP} = 1.0 \times 10^{-10}$ $Q_{SP} > K_{SP}$ 1.0×10^{-10} 1.8×10^{-11}

Precipitate will form.

Once known that a precipitate will form, determine how much precipitate will form in a 250 mL sample of the water.

	$Mg(OH)_2(s)$	\Leftrightarrow Mg ²⁺	+	20H ⁻
Ι		2.5 x 10 ⁻⁴ M		6.3 x 10 ⁻⁴ M
С		— X		- 2x
E		$2.5 \times 10^{-4} - x$		$6.3 \ge 10^{-4} - 2x$

$$K_{SP} = [Mg^{2+}][OH^{-}]^{2}$$

1.8 x 10⁻¹¹ = (2.5 x 10⁻⁴ -x)(6.3 x 10⁻⁴ - 2x)²

 $x = 1.25 \times 10^{-4} M$ This is amount that reacts to form precipitate

In a 250 mL sample, the amount in grams can now be calculated.

$$(0.250L) \left(\frac{1.25x10^{-4} \text{mol Mg(OH)}_2}{L} \right) = 3.1x10^{-5} \text{mol Mg(OH)}_2$$
$$(3.1x10^{-5} \text{mol Mg(OH)}_2) \left(\frac{58.31g \text{ Mg(OH)}_2}{\text{mol}} \right) = 0.0018g \text{ Mg(OH)}_2$$