Titration Calculations

Strong Acid/Strong Base Calculations

 Use balanced equation to do stoichiometric calculation.
Determine pH from amount of strong acid/base that is in excess. Note: At stoichiometry point of equal acid and base, pH =7.

Example:

What is pH after 0.0 mL, 10.0mL, at equivalence point, and 50.0 mL of base has been added during a titration to 25.0 mL of a 0.12M HCl solution with 0.15M NaOH solution?

For strong acid/base titration, perform stoichiometry calculation first; then calculation resulting concentration with total volume; finally, calculate pH directly.

(A) 0.0 mL base: Solution is 0.12M HCl pH = -log[H+] = -log(0.12) = 0.92

(B) 10.0mL added bas	se:					
HCl(aq)	+	NaOH(aq)	->	$H_2O(l)$	+	NaCl(aq)
(0.0250L)(0.12M)		(0.0100L)(0.15M)				
0.0030 mol		0.0015 mol				0
<u>-0.0015 mol</u>		<u>-0.0015 mol</u>				<u>+0.0015 mol</u>
0.0015 mol		0				0.0015 mol

[HCl] = 0.0015 mol/0.0350L = 0.043 MTherefore since strong acid: $[H^+] = 0.043 \text{ M}$ so $pH = -\log(0.043) = 1.37$

(C) At Equivalence Point: Volume of base added = (0.0030mol HCl)(1mol NaOH/1mol HCl)(1L/0.15mol NaOH) = 0.020 L = 20, mL added base

Since NaCl does not hydrolyze water, pH is neutral 7.00.

(D) 50.0mL added bas	e:					
HCl(aq)	+	NaOH(aq)	->	$H_2O(1)$	+	NaCl(aq)
(0.0250L)(0.12M)		(0.0500L)(0.15M)				
0.0030 mol		0.0075 mol				0
<u>-0.0030 mol</u>		<u>-0.0030 mol</u>				+0.0030 mol
0 mol		0.0045 mol				0.0030 mol

[NaOH] = 0.0045 mol/0.0750L = 0.060 MTherefore since strong base left: $[OH^-] = 0.060 \text{ M}$ so pOH = -log (0.060) = 1.22pH = 12.78

Weak Acid/Strong Base Calculations

What is pH after 0.0 mL, 10.0mL, at equivalence point, and 50.0 mL of base has been added during a titration to 25.0 mL of a 0.12M HF solution with 0.15M NaOH solution? $K_a = 6.8 \times 10^{-4}$

(1) Use balanced equation to do stoichiometric calculation.

(2) Determine new concentrations by dividing by total volume.

(3) Use appropriate equilibrium reaction and ICE chart to determine pH.

Stoichiometric Read	ction:					
HF(aq)	+	NaOH(ad	q)	-> $H_2O(1)$) +	• NaF(aq)
Equilibrium Reaction	on:					
HF(aq)	+	$H_2O(1)$	->	$H_3O^+(aq)$	+	F ⁻ (aq)

(A) Addition of 0.0 mL of base: Only weak acid present.

	HF (aq)	+	H_2O	\Leftrightarrow	H_3O^+ (aq)	+	F ⁻ (aq)
Ι							
C							
E							·

- (B) What is pH after 10.0mL of 0.15M NaOH solution has been added to 25.0 mL of 0.12M HF solution? $K_a = 6.8 \times 10^{-4}$
- (1) Use balanced equation to do stoichiometric calculation.
- (2) Determine new concentrations by dividing by total volume.

(3) Use appropriate equilibrium reaction and ICE chart to determine pH.

(1) Stoichiometric Reaction:

HF(aq)	+	NaOH(aq)	->	$H_2O(l)$	+	NaF(aq)
(0.0250L)(0.12M)		(0.0100L)(0.1	5M)			
mol		mol				0
<u>– mol</u>		<u>– mol</u>			+	mol

(2) New concentrations:

[HF] =

 $[F^{-}] =$

(3) Equilibrium Reaction:

	HF (aq)	+	H_2O	\Leftrightarrow	H_3O^+ (aq)	+	F ⁻ (aq)
Ι							
C							
E							

(C) What is pH at equivalence point?

First need to determine volume at equivalence point.

- (1) Use balanced equation to do stoichiometric calculation.
- (2) Determine new concentrations by dividing by total volume.

(3) Use appropriate equilibrium reaction and ICE chart to determine pH.

(1) Stoichiometric Reaction:

HF(aq)	+	NaOH(aq)	->	$H_2O(1)$	+	NaF(aq)
(0.0250L)(0.12M)		(L)(0.15	M)			
mol		mol				0
<u>– mol</u>		<u> </u>			+	mol

(2) New concentrations:

[HF] =

$$[F^{-}] = K_{b} = \frac{1 \times 10^{-14}}{6.8 \times 10^{-4}} = 1.5 \times 10^{-11}$$

(3) Equilibrium Reaction:

Only conjugate base now left. So must use equilibrium reaction for conjugate base and calculate $K_{\rm b}.$

	F ⁻ (aq)	+	H ₂ O	\Leftrightarrow	OH ⁻ (aq)	+	HF (aq)
Ι							
C						•	•
E			·				•

- (D) What is pH after 50.0mL of 0.15M NaOH solution has been added to 25.0 mL of 0.12M HF solution? $K_a = 6.8 \times 10^{-4}$
- (1) Use balanced equation to do stoichiometric calculation.
- (2) Determine new concentrations by dividing by total volume.

(3) Use appropriate equilibrium reaction and ICE chart to determine pH.

(1) Stoichiometric Reaction:

+	NaOH(aq)	->	$H_2O(1)$	+	NaF(ac	1)
	(0.0500L)(0.15	M)				
	mol				0	
_	<u>– mol</u>				+	mol
	+	+ NaOH(aq) (0.0500L)(0.15 mol _ mol	+ NaOH(aq) -> (0.0500L)(0.15M) mol _ mol	+ NaOH(aq) -> $H_2O(1)$ (0.0500L)(0.15M) mol mol	+ NaOH(aq) -> $H_2O(1)$ + (0.0500L)(0.15M) mol mol	+ NaOH(aq) -> $H_2O(1)$ + NaF(ac (0.0500L)(0.15M) mol 0 - mol +

(2) New concentrations:

[OH⁻] =

$$[F^{-}] = K_{b} = \frac{1 \times 10^{-14}}{6.8 \times 10^{-4}} = 1.5 \times 10^{-11}$$

(3) Equilibrium Reaction:

	F ⁻ (aq)	+	H ₂ O	\Leftrightarrow	OH ⁻ (aq)	+	HF (aq)
Ι							
C							
E							