Titration Calculations

Strong Acid/Strong Base Calculations

(1) Use balanced equation to do stoichiometric calculation.
(2) Determine pH from amount of strong acid/base that is in excess.

Note: At stoichiometry point of equal acid and base, $\mathrm{pH}=7$.

Example:

What is pH after $0.0 \mathrm{~mL}, 10.0 \mathrm{~mL}$, at equivalence point, and 50.0 mL of base has been added during a titration to 25.0 mL of a 0.12 M HCl solution with 0.15 M NaOH solution?

For strong acid/base titration, perform stoichiometry calculation first; then calculation resulting concentration with total volume; finally, calculate pH directly.
(A) 0.0 mL base: Solution is $0.12 \mathrm{M} \mathrm{HCl} \mathrm{pH}=-\log [\mathrm{H}+]=-\log (0.12)=0.92$
(B) 10.0 mL added base:

$\mathrm{HCl}(\mathrm{aq})$	+	$\mathrm{NaOH}(\mathrm{aq})$	->	$\mathrm{H}_{2} \mathrm{O}(1)$	$+$	$\mathrm{NaCl}(\mathrm{aq})$
$(0.0250 \mathrm{~L})(0.12 \mathrm{M})$		$(0.0100 \mathrm{~L})(0.15 \mathrm{M})$				
0.0030 mol		0.0015 mol				0
- 0.0015 mol		- 0.0015 mol				$+0.0015 \mathrm{~mol}$
0.0015 mol		0				0.0015 mol

$[\mathrm{HCl}]=0.0015 \mathrm{~mol} / 0.0350 \mathrm{~L}=0.043 \mathrm{M}$
Therefore since strong acid: $\left[\mathrm{H}^{+}\right]=0.043 \mathrm{M}$ so $\quad \mathrm{pH}=-\log (0.043)=1.37$
(C) At Equivalence Point:

Volume of base added $=(0.0030 \mathrm{~mol} \mathrm{HCl})(1 \mathrm{~mol} \mathrm{NaOH} / 1 \mathrm{~mol} \mathrm{HCl})(1 \mathrm{~L} / 0.15 \mathrm{~mol} \mathrm{NaOH})$

$$
=0.020 \mathrm{~L}=20 . \mathrm{mL} \text { added base }
$$

Since NaCl does not hydrolyze water, pH is neutral 7.00.
(D) 50.0 mL added base:

$\mathrm{HCl}(\mathrm{aq})$	+	$\mathrm{NaOH}(\mathrm{aq})$	->	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+	$\mathrm{NaCl}(\mathrm{aq})$
(0.0250L)(0.12M)		(0.0500L)(0.15M)				
0.0030 mol		0.0075 mol				0
$\underline{-0.0030 ~ \mathrm{~mol}}$		$\underline{-0.0030 ~ \mathrm{~mol}}$				$\underline{+0.0030 ~ \mathrm{~mol}}$
0 mol		0.0045 mol				0.0030 mol

$[\mathrm{NaOH}]=0.0045 \mathrm{~mol} / 0.0750 \mathrm{~L}=0.060 \mathrm{M}$
Therefore since strong base left: $\left[\mathrm{OH}^{-}\right]=0.060 \mathrm{M} \quad$ so $\mathrm{pOH}=-\log (0.060)=1.22$
$\mathrm{pH}=12.78$

Weak Acid/Strong Base Calculations

What is pH after $0.0 \mathrm{~mL}, 10.0 \mathrm{~mL}$, at equivalence point, and 50.0 mL of base has been added during a titration to 25.0 mL of a 0.12 M HF solution with 0.15 M NaOH solution? $\mathrm{K}_{\mathrm{a}}=6.8 \times 10^{-4}$
(1) Use balanced equation to do stoichiometric calculation.
(2) Determine new concentrations by dividing by total volume.
(3) Use appropriate equilibrium reaction and ICE chart to determine pH .

Stoichiometric Reaction:

$$
\mathrm{HF}(\mathrm{aq}) \quad+\quad \mathrm{NaOH}(\mathrm{aq}) \quad->\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad+\quad \mathrm{NaF}(\mathrm{aq})
$$

Equilibrium Reaction:
$\mathrm{HF}(\mathrm{aq}) \quad+\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad->\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \quad+\quad \mathrm{F}^{-}(\mathrm{aq})$
(A) Addition of 0.0 mL of base:

Only weak acid present.

	$\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$
I	
C	
E	

(B) What is pH after 10.0 mL of 0.15 M NaOH solution has been added to 25.0 mL of 0.12 M HF solution? $\mathrm{K}_{\mathrm{a}}=6.8 \times 10^{-4}$
(1) Use balanced equation to do stoichiometric calculation.
(2) Determine new concentrations by dividing by total volume.
(3) Use appropriate equilibrium reaction and ICE chart to determine pH .
(1) Stoichiometric Reaction:

(2) New concentrations:
[HF] $=$
$\left[\mathrm{F}^{-}\right]=$
(3) Equilibrium Reaction:

	$\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$
I	
C	
E	

(C) What is pH at equivalence point?

First need to determine volume at equivalence point.
(1) Use balanced equation to do stoichiometric calculation.
(2) Determine new concentrations by dividing by total volume.
(3) Use appropriate equilibrium reaction and ICE chart to determine pH .
(1) Stoichiometric Reaction:

HF(aq)	+		$\mathrm{NaOH}(\mathrm{aq})$	->	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+	$\mathrm{NaF}(\mathrm{aq})$
(0.0250L)(0.12M)		(L)(0.				
mol			mol				0
mol		-	mol			$+$	mol

(2) New concentrations:
$[\mathrm{HF}]=$
$\left[\mathrm{F}^{-}\right]=$

$$
\mathrm{K}_{\mathrm{b}}=\frac{1 \times 10^{-14}}{6.8 \times 10^{-4}}=1.5 \times 10^{-11}
$$

(3) Equilibrium Reaction:

Only conjugate base now left. So must use equilibrium reaction for conjugate base and calculate K_{b}.

| | $\mathrm{F}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq})$ |
| ---: | :--- | :--- |
| I | |
| C | |
| E | |

(D) What is pH after 50.0 mL of 0.15 M NaOH solution has been added to 25.0 mL of 0.12 M HF solution? $\mathrm{K}_{\mathrm{a}}=6.8 \times 10^{-4}$
(1) Use balanced equation to do stoichiometric calculation.
(2) Determine new concentrations by dividing by total volume.
(3) Use appropriate equilibrium reaction and ICE chart to determine pH .
(1) Stoichiometric Reaction:

(2) New concentrations:
$\left[\mathrm{OH}^{-}\right]=$
$\left[\mathrm{F}^{-}\right]=$

$$
\mathrm{K}_{\mathrm{b}}=\frac{1 \times 10^{-14}}{6.8 \times 10^{-4}}=1.5 \times 10^{-11}
$$

(3) Equilibrium Reaction:

	$\mathrm{F}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq})$
I	
C	
E	

