

Organic Chemistry I Practice Set #1 (Chapter 1 – Carey)

Consider the following acid-base reaction:

To decide on which side the equilibrium lies:

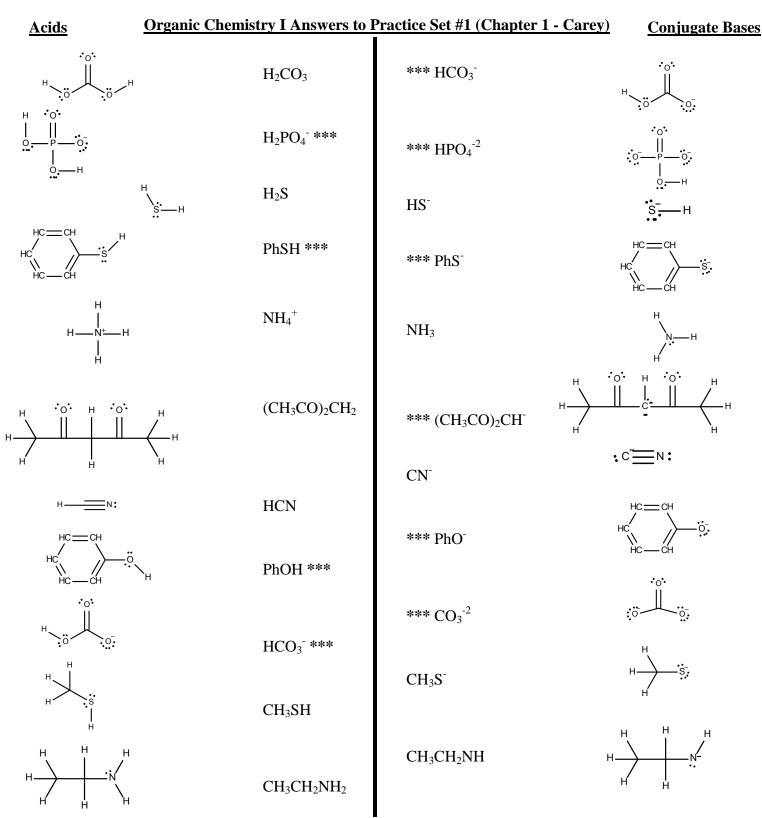
1) Identify conjugate acid-base pairs (connect above with lines);

2) If you know the pK_a values (or they are given), the equilibrium lies AWAY FROM THE STRONGER

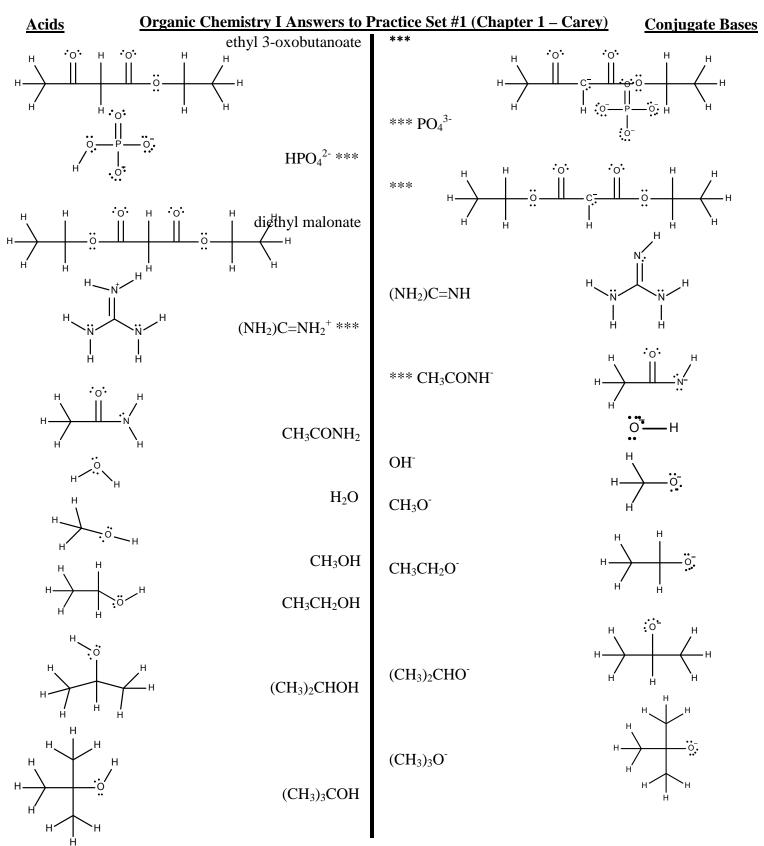
ACID. The stronger acid has lower pK_a

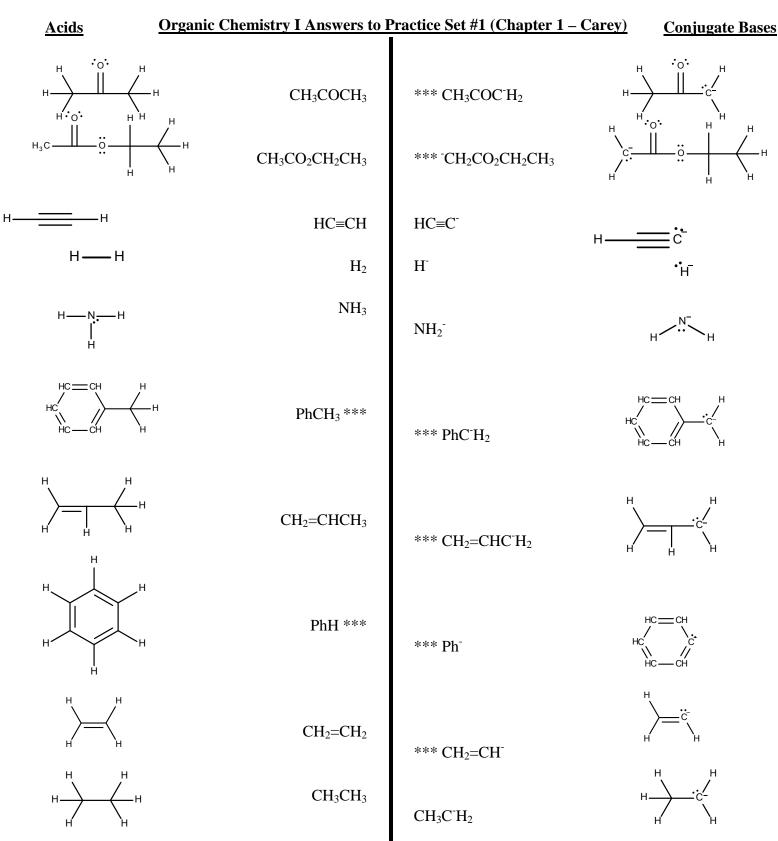
Instructions: Draw the correct Lewis Structures for each acid and conjugate base in the table below. Place a * (star) next to each one that has resonance structure(s). HA = acid; A⁻ = conjugate base

HA	<i>pK</i> _a		HA	<i>pK</i> _a	A^{-}
HI	-10	Γ	CH ₃ CH ₂ NH ₃ ⁺	11	CH ₃ CH ₂ NH ₂
HBr	-6	Br⁻	CH ₃ COCH ₂ CO ₂ CH ₂ CH ₃	11	[CH ₃ COCHCO ₂ CH ₂ CH ₃] ⁻
HCl	-4	Cl	HPO4 ²⁻	12	PO ₄ ³⁻
CF ₃ SO ₃ H	-6	$CF_3SO_3^-$	(CH ₃ CH ₂ O ₂ C) ₂ CH ₂	13	$(CH_3CH_2O_2C)_2CH^-$
H_2SO_4	-5	HSO ₄ ⁻	$(NH_2)_2C=NH_2^+$	13	$(NH_2)_2C=NH$
H_3O^+	-2	H ₂ O	CH ₃ CONH ₂	14	CH ₃ CONH ⁻
HSO ₄ ⁻	2	SO_4^{2-}	H ₂ O	15.7	HO
H ₃ PO ₄	2	$H_2PO_4^-$	CH ₃ OH	15.2	CH ₃ O ⁻
HF	3.5	F	CH ₃ CH ₂ OH	16	CH ₃ CH ₂ O ⁻
CH ₃ CO ₂ H	4.7	CH ₃ CO ₂ ⁻	(CH ₃) ₂ CHOH	17	(CH ₃) ₂ CHO ⁻
PhNH ₃ ⁺	4.6	PhNH ₂	(CH ₃) ₃ COH	18	(CH ₃) ₃ CO
$C_5H_5N^+H$ (pyridinium)	5.2	C ₅ H ₅ N	CH ₃ COCH ₃	19	CH ₃ COCH ₂ ⁻
H ₂ CO ₃	6.4	HCO ₃ ⁻	CH ₃ CO ₂ CH ₂ CH ₃	25	⁻ CH ₃ CO ₂ CH ₂ CH ₃
$H_2PO_4^-$	7	HPO ₄ ²⁻	HC≡CH	26	HC≡C⁻
H_2S	7	HS	H ₂	35	H
PhSH	7	PhS	NH ₃	36	NH ₂ ⁻
NH4 ⁺	9	NH ₃	PhCH ₃	41	[PhCH ₂] ⁻
$(CH_3CO)_2CH_2$	9	$(CH_3CO)_2CH^-$	CH ₂ =CHCH ₃	43	[CH ₂ =CHCH ₂]
HCN	9	CN⁻	PhH	43	Ph ⁻
PhOH	10	PhO	CH ₂ =CH ₂	45	$[CH_2=CH]^{-1}$
HCO ₃ ⁻	10	CO_{3}^{2}	CH ₃ CH ₃	62	[CH ₃ CH ₂]
CH ₃ SH	11	CH_3S^-			-


This resource was prepared by the Tallahassee Community College Learning Commons Adapted from practice handouts created by Dr. EF Hilinski of Florida State University

Acids	Organic Chemistry I Answers to I	ev) <u>Conjugate Bases</u>	
H — Br	HBr	Br	<u>Conjugate Bases</u> Br. O : I: : (19
Hi.	HI	Г	:Ţ:
н—сј.	HCl	Cl.	:(19
:F: :0: :F: :0: :F: ::::::::::::::::::::	CF3SO3H ***	*** CF3SO3	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
н—о́—s—о́—н II II ,о.	H ₂ SO ₄ ***	*** HSO4 ⁻	н—о́—s—о́.
н—о, : —н н	H_3O^+	H ₂ O	нон
н <u>о s in s</u> н <u>о s in s</u> ,0. н <u>о р</u> о н	HSO4 ⁻ ***	SO ₄ ⁻²	;;; <u> </u>
н—о́_р_о́_н	H3PO4 ***	*** H ₂ PO ₄ *	H0 H0 I i 0, I
H	HF	F ⁻	F.
	CH ₃ CO ₂ H	*** CH ₃ CO ₂ -	
	PhNH3 ⁺ ***	*** PhNH2	
	C5H5N ⁺ H ***	*** C5H5N	


This resource was prepared by the Tallahassee Community College Learning Commons Adapted from practice handouts created by Dr. EF Hilinski of Florida State University


This resource was prepared by the Tallahassee Community College Learning Commons Adapted from practice handouts created by Dr. EF Hilinski of Florida State University

This resource was prepared by the Tallahassee Community College Learning Commons Adapted from practice handouts created by Dr. EF Hilinski of Florida State University

This resource was prepared by the Tallahassee Community College Learning Commons Adapted from practice handouts created by Dr. EF Hilinski of Florida State University