Organic Chemistry Practice Problems

Organic Chemistry I Practice Set \#11 (Chapters 8-10 - Carey)

1) For the following compound, provide a name. Be sure to identify stereoisomers properly.
2) Fill in what is missing. Either give all of the missing reagents to complete the reaction or give a structural formula for the major organic product(s). Show
 stereoisomers properly if necessary. If no reaction occurs, write N.R. If the product is a racemic mixture, show both structures.

2i)
$2 \mathrm{~g})$

2j)

2k)

21)

$$
\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{3} \quad \xrightarrow{2 \text { eq. } \mathrm{HCl}} ? ?
$$

2m)

$$
\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{3} \xrightarrow{1 \text { eq. } \mathrm{HCl}} ? ?
$$

2n)

This resource was prepared by the Tallahassee Community College Learning Commons Adapted from practice handouts created by Dr. EF Hilinski of Florida State University

Organic Chemistry Practice Problems

3) Provide an efficient multistep synthesis for each of the following conversions of the given starting material into product. For each transformation, give all necessary reagents and catalysts and give a structural formula of the organic product. Show stereochemistry appropriately when necessary.

b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHBr}_{2} \rightarrow$

c)

4) Using arrows to show the flow of electrons, write a stepwise mechanism for the reaction shown below. For your mechanism, concisely explain why $X=81 \%$ yield and $Y=19 \%$ yield when the reaction is performed at $-80^{\circ} \mathrm{C}$ and why $X=44 \%$ yield and $Y=56 \%$ yield when the reaction is performed at room temperature ($25^{\circ} \mathrm{C}$).

Organic Chemistry Practice Problems

Organic Chemistry I Answers to Practice Set \#11 (Chapters 8-10 - Carey)

1) (1R,2S)-2-methyl-1-propynylcyclohexanol

2a)

pyridine

2b) $\mathrm{PBr}_{3} \quad$ 2c)

2e)

2h) $\mathrm{H}_{2} \mathrm{SO}_{4}$, heat
2i) $\mathrm{Na}, \mathrm{NH}_{3}$
2j)

2k) $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HgSO}_{4}$
21)

2m)
 a)

3a)
2f)

2g)

2d)

Organic Chemistry I Answers to Practice Set \#11 (Chapters 8-10- Carey)
(4) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}-\ddot{\mathrm{Br}}_{r}: \rightarrow\left[\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\stackrel{\oplus}{\mathrm{CH}}-\mathrm{CH}_{3} \leftrightarrow \mathrm{H}_{2}^{\oplus} \mathrm{C}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}\right] \quad \ddot{\mathrm{Br}}{ }_{r}^{\ominus}$
a) There is more $s^{(4)}$ on the $2^{\circ}\left(\right.$ than the $\left.1^{\circ}\right) \mathrm{C}$.
At $-80^{\circ} \mathrm{C}, 1,2$-addition is favored, the reaction is kine. ally controlled.
b)

X - major product@ $80^{\circ} \mathrm{C}$

At $25^{\circ} \mathrm{C}$, conjugate 1,4 is favored; the reaction is the emodynamically contulud.
The double bond in Y is 1,2 -disubstituted and therefore alkene Y is thermodynamically more stable than allee X which has a menosubstituted dabble bond.

