

Mechanics:Physical ScienceNewton's laws of motion. $s = \frac{1}{2}a \cdot t^2 + a \cdot t + s_0$ 1. Inertia $v = a \cdot t + v_0$ 2. $F_{net} = m \cdot a$ a = acceleration3. action = -reactiona = acceleration

speed is scalar, magnitude only vs. velocity is a vector, both magnitude and direction

Work and Energy	Gravity
Kinetic: $KE = \frac{1}{2} m \bullet v^2$	$\mathbf{s} = \frac{1}{2}\mathbf{g} \bullet \mathbf{t}^2 + \mathbf{g} \bullet \mathbf{t} + \mathbf{s}_0$
Potential : $PE = m \bullet g \bullet y$	$\mathbf{v} = \mathbf{g} \bullet \mathbf{t} + \mathbf{v}_0$
Work = $F \bullet s = E_2 - E_1$	$a=g \cong -9.8 \text{ m/s}^2 \cong -32 \text{ ft/s}^2$
Power = work/time	$g = G \bullet m_1 \bullet m_2/d^2$
	$G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m/kg}^2$

Chemical bonds

Covalent: electron sharing, strong bonds each atom is attracted for shared electrons. Ionic: electron gaining/losing, change in charge attracts atoms Metal: electrons loosely bonded to metal nuclei. Sea of electrons permits heat, electricity and shaping of metal.

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

Mechanics: Newton's laws of motion.

1. Inertia

2. $F_{net} = m \bullet a$

3. action = -reaction

Physical Science Kinematic Equations $s = \frac{1}{2}a \bullet t^2 + a \bullet t + s_0$ $v = a \bullet t + v_0$ a = acceleration

speed is scalar, magnitude only vs. velocity is a vector, both magnitude and direction

Work and Energy	Gravity
Kinetic: $KE = \frac{1}{2} m \bullet v^2$	$\mathbf{s} = \frac{1}{2}\mathbf{g} \bullet \mathbf{t}^2 + \mathbf{g} \bullet \mathbf{t} + \mathbf{s}_0$
Potential : $PE = m \bullet g \bullet y$	$\mathbf{v} = \mathbf{g} \bullet \mathbf{t} + \mathbf{v}_0$
Work = $F \bullet s = E_2 - E_1$	$a=g \cong -9.8 \text{ m/s}^2 \cong -32 \text{ ft/s}^2$
Power = work/time	$g = G \bullet m_1 \bullet m_2/d^2$
	$G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m/kg}^2$

Chemical bonds

Covalent: electron sharing, strong bonds each atom is attracted for shared electrons. Ionic: electron gaining/losing, change in charge attracts atoms Metal: electrons loosely bonded to metal nuclei. Sea of electrons permits heat, electricity and shaping of metal.

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

Physical Science

Electricity and Magnetism V, voltage (volt, V) = PE/charge or I•R I, current (ampere, A) = charge/time or voltage/resistance R, resistance (ohm, Ω) = voltage/current P, power (watt, W) = I•V q, charge (coulomb, C) = 1C \cong charge on 6.25x10¹⁸ e⁻ Coulombs Law: F = k•q1•q2/d² Faraday's Law: voltage induced \cong number of loops•B field/time F = q•v•B V, velocity (meter/second) B, magnetic field strength (tesla, T)

Atom, Nuclear, and Chemistry

Mass number, the number of nucleons $p^+ + n^0$. Atomic number, the number of protons p^+ . Number of neutrons = mass # - atomic #. Isotope is an atom with differing # of neutrons n^0 , has radioactive properties. Energy is released when mass is converted into E according to $E = mc^2$.

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

Physical Science

Electricity and Magnetism V, voltage (volt, V) = PE/charge or I•R I, current (ampere, A) = charge/time or voltage/resistance R, resistance (ohm, Ω) = voltage/current P, power (watt, W) = I•V q, charge (coulomb, C) = 1C \cong charge on 6.25x10¹⁸ e⁻ Coulombs Law: F = k•q₁•q₂/d² Faraday's Law: voltage induced \cong number of loops•B field/time F = q•v•B V, velocity (meter/second) B, magnetic field strength (tesla, T)

Atom, Nuclear, and Chemistry

Mass number, the number of nucleons $p^+ + n^0$. Atomic number, the number of protons p^+ . Number of neutrons = mass # - atomic #. Isotope is an atom with differing # of neutrons n^0 , has radioactive properties. Energy is released when mass is converted into E according to $E = mc^2$.

This instructional aid was prepared by the Tallahassee Community College Learning Commons.