Mechanics:

Newton's laws of motion.

1. Inertia
2. $\mathrm{F}_{\text {net }}=\mathrm{m} \bullet \mathrm{a}$

Physical Science

Kinematic Equations
$\mathrm{s}=\frac{1}{2} \mathrm{a} \bullet \mathrm{t}^{2}+\mathrm{a} \bullet \mathrm{t}+\mathrm{s}_{0}$
3. action = -reaction
$\mathrm{v}=\mathrm{a} \bullet \mathrm{t}+\mathrm{v}_{0}$
$\mathrm{a}=$ acceleration
speed is scalar, magnitude only vs. velocity is a vector, both magnitude and direction

Work and Energy

Kinetic: $\mathrm{KE}=\frac{1}{2} \mathrm{~m} \bullet \mathrm{v}^{2}$
Potential : PE = m•g•y
Work $=\mathrm{F} \bullet \mathrm{s}=\mathrm{E}_{2}-\mathrm{E}_{1}$
Power $=$ work/time

> Gravity
> $\mathrm{s}=\frac{1}{2} \mathrm{~g} \bullet \mathrm{t}^{2}+\mathrm{g} \bullet \mathrm{t}+\mathrm{s}_{0}$
> $\mathrm{v}=\mathrm{g} \bullet \mathrm{t}+\mathrm{v}_{0}$
> $\mathrm{a}=\mathrm{g} \cong-9.8 \mathrm{~m} / \mathrm{s}^{2} \cong-32 \mathrm{ft} / \mathrm{s}^{2}$
> $\mathrm{~g}=\mathrm{G} \bullet \mathrm{m}_{1} \bullet \mathrm{~m}_{2} / \mathrm{d}^{2}$
> $\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \bullet \mathrm{~m} / \mathrm{kg}^{2}$

Chemical bonds
Covalent: electron sharing, strong bonds each atom is attracted for shared electrons.
Ionic: electron gaining/losing, change in charge attracts atoms
Metal: electrons loosely bonded to metal nuclei. Sea of electrons permits heat, electricity and shaping of metal.

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

$\sqrt{\text { CIEARNING }}$

Mechanics:

Newton's laws of motion.

1. Inertia
2. $F_{\text {net }}=\mathrm{m} \bullet \mathrm{a}$
3. action $=$-reaction

Physical Science

Kinematic Equations
$\mathrm{s}=\frac{1}{2} \mathrm{a} \bullet \mathrm{t}^{2}+\mathrm{a} \bullet \mathrm{t}+\mathrm{s}_{0}$
$\mathrm{v}=\mathrm{a} \bullet \mathrm{t}+\mathrm{v}_{0}$
$\mathrm{a}=$ acceleration
speed is scalar, magnitude only vs. velocity is a vector, both magnitude and direction

Work and Energy

Kinetic: $\mathrm{KE}=\frac{1}{2} \mathrm{~m} \bullet \mathrm{v}^{2}$
Potential : PE = m•g•y
Work $=\mathrm{F} \bullet \mathrm{s}=\mathrm{E}_{2}-\mathrm{E}_{1}$
Power $=$ work/time

Gravity

$$
\begin{aligned}
& \mathrm{s}=\frac{1}{2} \mathrm{~g} \bullet \mathrm{t}^{2}+\mathrm{g} \bullet \mathrm{t}+\mathrm{s}_{0} \\
& \mathrm{v}=\mathrm{g} \bullet \mathrm{t}+\mathrm{v}_{0} \\
& \mathrm{a}=\mathrm{g} \cong-9.8 \mathrm{~m} / \mathrm{s}^{2} \cong-32 \mathrm{ft} / \mathrm{s}^{2} \\
& \mathrm{~g}=\mathrm{G} \bullet \mathrm{~m}_{1} \bullet \mathrm{~m}_{2} / \mathrm{d}^{2} \\
& \mathrm{G}=6.67 \mathrm{x} 10^{-11} \mathrm{~N} \bullet \mathrm{~m} / \mathrm{kg}^{2}
\end{aligned}
$$

Chemical bonds
Covalent: electron sharing, strong bonds each atom is attracted for shared electrons.
Ionic: electron gaining/losing, change in charge attracts atoms
Metal: electrons loosely bonded to metal nuclei. Sea of electrons permits heat, electricity and shaping of metal.

Physical Science

Electricity and Magnetism

V , voltage (volt, V) $=\mathrm{PE} /$ charge or $\mathrm{I} \bullet \mathrm{R}$
I, current (ampere, A) = charge/time or voltage/resistance
R, resistance (ohm, Ω) = voltage/current
P, power (watt, W) $=\mathrm{I} \bullet \mathrm{V}$
q , charge (coulomb, C) $=1 \mathrm{C} \cong$ charge on $6.25 \times 10^{18} \mathrm{e}^{-}$
Coulombs Law: $\mathrm{F}=\mathrm{k} \bullet \mathrm{q}_{1} \bullet \mathrm{q}_{2} / \mathrm{d}^{2}$
Faraday's Law: voltage induced \cong number of loops \bullet B field/time
$\mathrm{F}=\mathrm{q} \cdot \mathrm{v} \bullet \mathrm{B}$
V, velocity (meter/second)
B, magnetic field strength (tesla, T)

Atom, Nuclear, and Chemistry

Mass number, the number of nucleons $\mathrm{p}^{+}+\mathrm{n}^{0}$.
Atomic number, the number of protons p^{+}.
Number of neutrons = mass \#- atomic \#.
Isotope is an atom with differing \# of neutrons n^{0}, has radioactive properties.
Energy is released when mass is converted into E according to $E=\mathrm{mc}^{2}$.

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

LEARNING COMMONS

Physical Science

Electricity and Magnetism

V , voltage (volt, V) $=\mathrm{PE} /$ charge or $\mathrm{I} \bullet \mathrm{R}$
I, current (ampere, A) = charge/time or voltage/resistance
R , resistance (ohm, Ω) = voltage/current
P, power (watt, W) $=\mathrm{I} \bullet \mathrm{V}$
q , charge (coulomb, C) $=1 \mathrm{C} \cong$ charge on $6.25 \times 10^{18} \mathrm{e}^{-}$
Coulombs Law: $\mathrm{F}=\mathrm{k} \bullet \mathrm{q}_{1} \bullet \mathrm{q}_{2} / \mathrm{d}^{2}$
Faraday's Law: voltage induced \cong number of loops \bullet B field/time
$\mathrm{F}=\mathrm{q} \cdot \mathrm{v} \bullet \mathrm{B}$
V, velocity (meter/second)
B, magnetic field strength (tesla, T)

Atom, Nuclear, and Chemistry

Mass number, the number of nucleons $\mathrm{p}^{+}+\mathrm{n}^{0}$.
Atomic number, the number of protons p^{+}.
Number of neutrons = mass \#- atomic \#.
Isotope is an atom with differing \# of neutrons n^{0}, has radioactive properties.
Energy is released when mass is converted into E according to $\mathrm{E}=\mathrm{mc}^{2}$.

