Finding x and y Intercepts

The x-intercept is the point at which a graph crosses the x-axis. As the y value is zero anywhere along the x-axis, the x-intercept is an ordered pair of numbers where the y value is always zero. The points $(-3, 0)$, $(1, 0)$, $(4, 0)$ are all examples of points on the x-axis.

The y-intercept is the point at which a graph crosses the y-axis. As the x value is zero anywhere along the y-axis, the y-intercept is an ordered pair of numbers where the x value is always zero. The points $(0, 1)$, $(0, -1)$, and $(0, 2)$ are all examples of points on the y-axis.

It is possible to graph the equation of a line by finding the x- and y-intercepts.

This instructional aid was prepared by the Tallahassee Community College Learning Commons.
EXAMPLE: We will graph the equation $3x + 2y = 12$ by finding the x- and y-intercepts.

1. To find the x-intercept, let $y = 0$ and solve for x.

 $3x + 2y = 12$
 $3x + 2(0) = 12$
 $3x = 12$
 $x = 4$

 The x-intercept is the ordered pair $(4, 0)$.

2. To find the y-intercept, let $x = 0$ and solve for y.

 $3x + 2y = 12$
 $3(0) + 2y = 12$
 $2y = 12$
 $y = 6$

 The y-intercept is the ordered pair $(0, 6)$.

3. Graph the ordered pairs and draw the line.

EXAMPLE: Find the x- and y-intercepts of $y = 2x + 6$ and graph.

1. Find the x-intercept. (y will be 0)

 $y = 2x + 6$
 $0 = 2x + 6$
 $-6 = 2x$
 $-3 = x$

 The x-intercept is $(-3, 0)$.

2. Find the y-intercept. (x will be 0)

 $y = 2x + 6$
 $y = 2(0) + 6$
 $y = 6$

 The y-intercept is $(0, 6)$.

3. Graph the intercepts and draw the line.

This instructional aid was prepared by the Tallahassee Community College Learning Commons.
EXAMPLE: Find the \(x\)- and \(y\)-intercepts of \(3x + 4y = 0\) and graph.

1. Find the \(x\)-intercept (set \(y = 0\))

 \[
 3x + 4y = 0 \\
 3x + 4(0) = 0 \\
 3x = 0 \\
 x = 0
 \]

 The \(x\)-intercept is \((0, 0)\).

2. Find the \(y\)-intercept (set \(x = 0\))

 \[
 3x + 4y = 0 \\
 3(0) + 4y = 0 \\
 4y = 0 \\
 y = 0
 \]

 The \(y\)-intercept is \((0, 0)\).

NOTE that the \(x\)- and \(y\)-intercept are both at the point \((0, 0)\). This means that the line goes through the origin. We will need to find another point in order to graph. Pick a value for \(x\) and solve for \(y\).

Let's see what happens if we let \(x = 4\) after writing the equation in the \(y = mx + b\) form.
(See handout #43)

Solve for \(y\):

\[
3x + 4y = 0 \\
4y = -3x + 0 \\
\frac{4y}{4} = \frac{-3x}{4} \\
y = -\frac{3}{4}x
\]

Now let \(x = 4\):

\[
y = -\frac{3}{4}(4) \\
y = -3
\]

The point \((4, -3)\) is a solution of \(3x + 4y = 0\).

3. Graph the \(x\)- and \(y\)-intercept and the point \((4, -3)\), and then draw the line.

This instructional aid was prepared by the Tallahassee Community College Learning Commons.
EXERCISES: Find the x- and y-intercepts of the following equations and graph the line of each equation.

a. $y = 2x + 8$
 x-intercept: (-4, 0)
 y-intercept: (0, 8)

b. $y = 5x + 10$
 x-intercept: (-2, 0)
 y-intercept: (0, 10)

c. $x - 3y = 6$
 x-intercept: (6, 0)
 y-intercept: (0, -2)

d. $3x - 4y = 12$
 x-intercept: (4, 0)
 y-intercept: (0, -3)

e. $2x - 4y = 8$
 x-intercept: (4, 0)
 y-intercept: (0, -2)

f. $2x + 3y = 0$
 x-intercept: (0, 0)
 y-intercept: (0, 0)
 You will need another point to complete the graph.

This instructional aid was prepared by the Tallahassee Community College Learning Commons.