Graphing Quadratics - Practice (and solutions)

The graph of a quadratic function, \(f(x) = ax^2 + bx + c \), is a parabola:

1. The axis of symmetry is the line

\[
x = \frac{-b}{2a}
\]

2. The vertex lies on the axis of symmetry. The \(y \)-coordinate of the vertex is

\[
f \left(\frac{-b}{2a} \right)
\]

3. If \(a > 0 \) the parabola opens upward. If \(a < 0 \) the parabola opens downward.

4. The \(x \)-intercept(s), if any, are found by setting \(f(x) = 0 \), and solving \(ax^2 + bx + c = 0 \)

5. To find the \(y \)-intercept, set \(x = 0 \) and solve for \(y \).

6. If the parabola opens upward, then the \(y \)-value at the vertex is a minimum value.

 If the parabola opens downward, then the \(y \)-value at the vertex is a maximum value.

For each function, find the axis of symmetry, vertex, \(y \)-intercept, and \(x \)-intercept(s), if any. Determine the domain and range for the function. State whether the function has a relative maximum or minimum, and state the value of the max or min. Sketch the graph of the equation.
1. \(f(x) = x^2 - 6x + 7 \)
2. \(g(x) = 3x^2 + 2 \)
3. \(y = x^2 + 6x - 5 \)
4. \(h(t) = -t^2 - 4t + 12 \)
5. \(k(x) = 4x - 6 + 2x^2 \)
6. \(f(x) = -2x^2 + 7x - 5 \)
7. \(f(x) = 3x^2 + 2x + 2 \)
8. \(y = x^2 - 6x + 5 \)
9. \(s(t) = -16t^2 + 48t + 8 \)
10. \(f(x) = x^2 + 2x - 8 \)
11. \(f(x) = -x^2 + 6x - 8 \)
12. \(f(x) = 6 + 2x - x^2 \)
13. \(f(x) = -2x^2 + x + 1 \)