Summary of Integration by Substitution

Steps to integration by substitution:

Example 1: Consider $\int (x^2 + 1) 2x \, dx$

- 1) Let u equal the expression inside the parenthesis. Solution: $\mathbf{u} = x^2 + 1$
- 2) Find du. Solution: du = 2x dx
- 3) Substitute. Solution: $\int (x^2 + 1) 2x \, dx = \int \mathbf{u} \, d\mathbf{u}$

4) Take the antiderivative of u. Solution: $\frac{u^2}{2} + c$

5) Substitute $x^2 + 1$ back in for u.

Final Solution: $\frac{(x^2+1)^2}{2} + c$

Example 2: Consider $\int 3x e^{x^2} dx$

- 1) Let u equal the expression inside the exponent. Solution: $\mathbf{u} = x^2$
- 2) Find du. Solution: du = 2x dx
- 3) We need to be able to substitute something in for 3x dx. But du = 2x dx. So use algebra to get the right side of #2 to equal 3x dx.

$$\frac{3}{2} du = \frac{3}{2} * 2x dx$$
 so $\frac{3}{2} du = 3x dx$

WILLIAM D. LAW, JR. LEARNING COMMONS

- 4) Substitute. Solution: $\int 3x \, dx \, e^{x^2} = \int \frac{3}{2} \, du \, e^u = \frac{3}{2} \int du \, e^u$ $\uparrow \uparrow$ $\frac{3}{2} du \, e^u$
- 5) Take the antiderivative of e^u . Solution: $\frac{3}{2}e^u + C$
- 6) Substitute x^2 back in for u.

Final Solution: $\frac{3}{2}e^{x^2} + c$

Example 3: Consider $\int 4x \sin(x^2) dx$

- 1) Let u equal x^2 . Solution: $\mathbf{u} = x^2$
- 2) Find du. Solution: du = 2x dx
- 3) We need to be able to substitute something in for 4x dx. But du = 2x dx. So use algebra to get the right side of #2 to equal 4x dx.

2 du = 2 * 2x dx so 2 du = 4x dx 4) Substitute. Solution: $\int 4x \, dx \sin(x^2) = \int \sin(u) 2 du = 2 \int du \sin(u)$ $\uparrow \uparrow$ 2 du sin(u) 5) Take the antiderivative of sin(u). Solution: 2(-cos(u)) = -2cos(u) + C

6) Substitute x^2 back in for u.

Final Solution: $-2\cos(x^2) + C$

WILLIAM D. LAW. JR. LEARNING **COMMONS**

Example 4: Consider $\int \frac{2}{x} \ln(x^2) dx$

- 1) Let u equal $\ln(x^2)$. Solution: $u = ln(x^2)$
- 2) Find du. Solution: $du = \frac{1}{x^2} 2x dx = \frac{2}{x} dx$
- 3) We need to be able to substitute something in for $\frac{2}{x} dx$. But $du = \frac{2}{x} dx$.

$$\mathbf{d}\mathbf{u} = \frac{2}{\mathbf{x}} \mathbf{d}\mathbf{x}$$

4) Substitute.

Solution:
$$\int \frac{2}{x} dx \ln(x^2) = \int u du$$

↑ ↑

du u

- 5) Take the antiderivative of u. Solution: $\frac{u^2}{2} + C$
- 6) Substitute $ln(x^2)$ back in for u.

Final Solution: $\frac{(\ln(x^2))^2}{2} + C$

LEARNING COMMONS

Practice Problems: Find the Indefinite Integral using substitution:

1)
$$\int 5x(1 + x^2)^3 dx$$

2) $\int -x^3(2-x^4)^2 dx$

3)
$$\int 3x^2 \cos(x^3) dx$$

4)
$$\int -6x e^{2x^2} dx$$

5)
$$\int \frac{3}{x} \ln(x^3) \, dx$$

Solutions:

1)
$$\frac{5(1+x^2)^4}{8}$$
 + C

2)
$$\frac{(2-x^4)^3}{12}$$
 + C

3) $sin(x^3) + C$

4)
$$\frac{-3}{2}e^{2x^2} + C$$

5)
$$\frac{(\ln(x^3))^2}{2} + c$$