Summary of Integration by Substitution

Steps to integration by substitution:

Example 1: Consider $\quad \int\left(x^{2}+1\right) 2 x d x$

1) Let u equal the expression inside the parenthesis.

Solution: $\mathrm{u}=\boldsymbol{x}^{\mathbf{2}}+\mathbf{1}$
2) Find du. Solution: $\mathbf{d u}=\mathbf{2 x} \mathbf{d x}$
3) Substitute. Solution: $\int\left(x^{2}+1\right) 2 x d x=\int u d u$

\uparrow	\uparrow
u	$d u$

4) Take the antiderivative of u. Solution: $\frac{u^{2}}{2}+c$
5) Substitute $x^{2}+1$ back in for u.

Final Solution: $\frac{\left(x^{2}+1\right)^{2}}{2}+c$
Example 2: Consider $\int 3 x e^{x^{2}} d x$

1) Let u equal the expression inside the exponent. Solution: $u=x^{2}$
2) Find $d u$. Solution: $d u=2 x d x$
3) We need to be able to substitute something in for $3 x d x$. But $d u=2 x d x$. So use algebra to get the right side of \#2 to equal $3 x \mathrm{dx}$.

$$
\frac{3}{2} d u=\frac{3}{2} * 2 x d x \quad \text { so } \quad \frac{3}{2} \boldsymbol{d} \boldsymbol{u}=\mathbf{3} \boldsymbol{x} \boldsymbol{d} \boldsymbol{x}
$$

4) Substitute. Solution: $\int 3 x d x e^{x^{2}}=\int \frac{3}{2} d u e^{u}=\frac{3}{2} \int d u e^{u}$

$$
\begin{gathered}
\uparrow \uparrow \\
\frac{3}{2} \mathbf{d u} \mathrm{e}^{\mathbf{u}}
\end{gathered}
$$

5) Take the antiderivative of e^{u}. Solution: $\frac{3}{2} e^{u}+\boldsymbol{C}$
6) Substitute x^{2} back in for u.

Final Solution: $\frac{3}{2} e^{x^{2}}+c$
Example 3: Consider $\int 4 x \sin \left(x^{2}\right) d x$

1) Let u equal x^{2}. Solution: $\mathbf{u}=\boldsymbol{x}^{\mathbf{2}}$
2) Find $\mathbf{d u}$. Solution: $\mathbf{d u}=\mathbf{2 x} \mathbf{d x}$
3) We need to be able to substitute something in for $4 x d x$. But $d u=2 x d x$. So use algebra to get the right side of $\# 2$ to equal $4 x \mathrm{dx}$.

$$
2 d u=2 * 2 x d x \quad \text { so } \quad \mathbf{2 d u}=\mathbf{4} \mathbf{x} \mathbf{d x}
$$

4) Substitute.

Solution: $\int 4 x d x \sin \left(x^{2}\right)=\int \sin (u) 2 d u==2 \int d u \sin (u)$

5) Take the antiderivative of $\sin (u)$. Solution: $2(-\boldsymbol{\operatorname { c o s }}(\boldsymbol{u}))=-\mathbf{2} \boldsymbol{\operatorname { c o s }}(\boldsymbol{u})+\boldsymbol{C}$
6) Substitute x^{2} back in for u.

Final Solution: $-2 \cos \left(x^{2}\right)+C$

Example 4: Consider $\int \frac{2}{\mathrm{x}} \ln \left(\mathrm{x}^{2}\right) \mathrm{dx}$

1) Let u equal $\ln \left(x^{2}\right)$. Solution: $\mathbf{u}=\ln \left(\mathbf{x}^{2}\right)$
2) Find du. Solution: $d u=\frac{1}{x^{2}} 2 x d x=\frac{2}{x} d x$
3) We need to be able to substitute something in for $\frac{2}{\mathrm{x}} \mathrm{dx}$. But $\mathrm{du}=\frac{2}{x} \mathrm{dx}$.

$$
d u=\frac{2}{x} d x
$$

4) Substitute.

Solution: $\int \frac{2}{x} \mathbf{d x} \ln \left(x^{2}\right)=\int \mathbf{u} \mathbf{d u}$

$$
\begin{array}{cc}
\uparrow & \uparrow \\
\mathbf{d u} & \mathbf{u}
\end{array}
$$

5) Take the antiderivative of u.

Solution: $\frac{\mathbf{u}^{2}}{2}+\mathbf{C}$
6) Substitute $\ln \left(x^{2}\right)$ back in for u.

Final Solution: $\frac{\left(\ln \left(x^{2}\right)\right)^{2}}{2}+C$

LEARNING COMMONS

Practice Problems:
Find the Indefinite Integral using substitution:

1) $\int 5 x\left(1+x^{2}\right)^{3} d x$
2) $\int-x^{3}\left(2-x^{4}\right)^{2} d x$
3) $\int 3 x^{2} \cos \left(x^{3}\right) d x$
4) $\int-6 x e^{2 x^{2}} d x$
5) $\int \frac{3}{x} \ln \left(\mathrm{x}^{3}\right) \mathrm{dx}$

Solutions:

1) $\frac{5\left(1+x^{2}\right)^{4}}{8}+C$
2) $\frac{\left(2-x^{4}\right)^{3}}{12}+C$
3) $\sin \left(x^{3}\right)+C$
4) $\frac{-3}{2} e^{2 x^{2}}+C$
5) $\frac{\left(\ln \left(x^{3}\right)\right)^{2}}{2}+c$

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

