(1) factor out the Greatest Common Factor (GCF) Form for GCF: $\mathrm{ax}^{2}+\mathrm{ax}+\mathrm{ab}=\mathrm{a}\left(\mathrm{x}^{2}+\mathrm{x}+\mathrm{b}\right)$
(2) factor by groūing (sēe exampTe below)
form: $\quad \underline{x^{2}+b x+c} . \quad$ Find factors of $c$ that add to get $b$ and multiply to get $c$.
form: $\quad a x^{2}+b x+c$. Use trial and error to find the factored form.
(5) form: $\quad \mathrm{P}^{2} \pm 2 \mathrm{PQ}+\mathrm{Q}^{2} \quad$ Then this factors into: $(\mathrm{P} \pm \mathrm{Q})^{2}$ (called "perfect square")
(6) form:
(7) form:
(8) form:
(9)

| $\mathrm{x}^{2}-\mathrm{y}^{2}=(\mathrm{x}+\mathrm{y})(\mathrm{x}-\mathrm{y})$ |
| :--- |
| $\mathrm{x}^{2}+\mathrm{y}^{2}$ |
| $\mathrm{x}^{3}+\mathrm{y}^{3}=(\mathrm{x}+\mathrm{y})\left(\mathrm{x}^{2}-\mathrm{xy}+\mathrm{y}^{2}\right)$ |
| $\mathrm{x}^{3}-\mathrm{y}^{3}=(\mathrm{x}-\mathrm{y})\left(\mathrm{x}^{2}+\mathrm{xy}+\mathrm{y}^{2}\right)$ |

Examples: Directions- factor all of the following completely.
$3 x^{2}+9 x+15$ has a GCF of 3. (NOTE: ALWAYS FACTOR OUT GCF FIRST!!)
Thus, factoring out 3 yields: $3\left(x^{2}+3 x+5\right)$
(Since the expression inside the parintheses cannot be factored, this is the final answer.)
(2) $3 x^{3}+2 x^{2}-6 x-4 \quad$ is a candidate for factoring by grouping. Grouping terms:
$\left(3 x^{3}+2 x^{2}\right)+(-6 x-4)=x^{2}(3 x+2)-2(3 x+2)=(3 x+2)\left(x^{2}-2\right)$
(3) $x^{2}+4 x-12$ Since $\mathrm{a}=1$ in the trinomial, need to find factors of -12 that add to get 4 . All the possible pairs of factors for -12 are: $\quad 1,-12 ;-1,12 ; 2,-6 ;-2,6 ; 3,-4 ;-3,4$ Since the only pair that adds to 4 is $\{-2,6\}$ the answer is: $(x-2)(x+6)$
$3 x^{2}+2 x-8 \quad$ Since $\frac{a \neq 1}{}$ in the trinomial, use trial and error to find the answer.
The factor pairs of 3 are: $\{3, \overline{1\}}$. $\quad$ The factor pairs for -8 are: $\{1,-8\},\{-1,8\},\{2,-4\},\{-2,4\}$ By trial and error it is found that the answer is $\quad(3 x-4)(x+2)$

|  |  | Sign Hints: |  |
| :--- | :--- | :--- | :--- |
| If trinomial has the form: | $a x^{2}+b x+c$ | then factored form is | $(p x+m)(q x+n)$ |
| If trinomial has the form: | $a x^{2}-b x+c$ | then factored form is | $(p x-m)(q x-n)$ |
| If trinomial has the form: | $a x^{2} \pm b x-c$ | then factored form is | $(p x+m)(q x-n) \underline{O R}(p x-m)(q x+n)$ | $4 x^{2}-12 x+9$ is in the form $\underline{P}^{2} \pm 2 P Q+Q^{2}$. Thus, $4 x^{2}-12 x+9=(2 x-3)^{2}$ (perfect square)

(6) $9 x^{2}-36 y^{2}$ is in the form of $x^{2}-y^{2}=(x+y)(x-y)$. Thus, $9 x^{2}-36 y^{2}=(3 x+6 y)(3 x-6 y)$
(7) $9 x^{2}+36 y^{2}$ is in the form of $x^{2}+y^{2}$. Thus, $9 x^{2}+36 y^{2}$ is non-factorable using integers.
(8) $8 x^{3}+27 y^{3} \quad$ is in the form of $\quad x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$.

Thus, $\quad 8 x^{3}+27 y^{3}=(2 x+3 y)\left(4 x^{2}-6 x y+9 y^{2}\right)$
$8 x^{3}-27 y^{3} \quad$ is in the form of $\quad x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
Thus, $\quad 8 x^{3}-27 y^{3}=(2 x-3 y)\left(4 x^{2}+6 x y+9 y^{2}\right)$

