¢ WILLIAM D. LAW, JR. LEARNING COMMONS **Factoring Summary**

- factor out the Greatest Common Factor (GCF) Form for GCF: $ax^2 + ax + ab = a(x^2 + x + b)$ (1) (2) factor by grouping (see example below)
- Find factors of c that add to get b and multiply to get c. (3) form:
- (4) form:
- $\frac{ax^{2} + bx + c}{P^{2} \pm 2PQ + Q^{2}}$ Use trial and error to find the factored form. Then this factors into: (P + C + 2) Then this factors into: (P + C + 2) Then this factors into: $(\mathbf{P} \pm \mathbf{Q})^2$ (called "perfect square") (5) form:
- $x^2 y^2 = (x + y)(x y)$ (6) form:
- (cannot be factored with integers!) (7) form:
- $+y^{3} = (x+y)(x^{2} xy + y^{2})$ (8) form:
- (9) form:

Examples: Directions - factor all of the following completely.

 $3x^2 + 9x + 15$ has a GCF of 3. (NOTE: ALWAYS FACTOR OUT GCF FIRST!!) (1) Thus, factoring out 3 yields: $3(x^2 + 3x + 5)$ (Since the expression inside the parintheses cannot be factored, this is the final answer.)

- $3x^3 + 2x^2 6x 4$ is a candidate for <u>factoring by grouping</u>. Grouping terms: (2) $(3x^3+2x^2)+(-6x-4) = x^2(3x+2)-2(3x+2) =$ $(3x+2)(x^2-2)$
- $x^2 + 4x 12$ Since <u>a=1</u> in the trinomial, need to <u>find factors of -12 that add to get 4</u>. (3) All the possible pairs of factors for -12 are: 1,-12; -1,12; 2,-6; -2,6; 3,-4; -3,4 Since the only pair that adds to 4 is $\{-2,6\}$ the answer is: (x - 2)(x + 6)
- $3x^2 + 2x 8$ Since $a \neq 1$ in the trinomial, use trial and error to find the answer. (4) The factor pairs of 3 are: $\{3,1\}$. The factor pairs for -8 are: $\{1,-8\}$, $\{-1,8\}$, $\{2,-4\}$, $\{-2,4\}$ By trial and error it is found that the answer is (3x - 4)(x + 2)

Sign Hints:			
If trinomial has the form:	$ax^2 + bx + c$	then factored form is	$(\mathbf{p}\mathbf{x} + \mathbf{m})(\mathbf{q}\mathbf{x} + \mathbf{n})$
If trinomial has the form:	$ax^2 - bx + c$	then factored form is	(px - m)(qx - n)
If trinomial has the form:	$ax^2 \pm bx - c$	then factored form is	$(\mathbf{px} + \mathbf{m})(\mathbf{qx} - \mathbf{n}) \underline{OR}(\mathbf{px} - \mathbf{m})(\mathbf{qx} + \mathbf{n})$

- $4x^2 12x + 9$ is in the form $P^2 \pm 2PQ + Q^2$. Thus, $4x^2 12x + 9 = (2x 3)^2$ (perfect square) (5)
- $9x^2 36y^2$ is in the form of $x^2 y^2 = (x + y)(x y)$. Thus, $9x^2 36y^2 = (3x + 6y)(3x 6y)$ (6)
- $9x^2 + 36y^2$ is in the form of $x^2 + y^2$. Thus, $9x^2 + 36y^2$ is non-factorable using integers. (7)
- $8x^{3} + 27y^{3} \text{ is in the form of } x^{3} + y^{3} = (x + y)(x^{2} xy + y^{2}).$ Thus, $8x^{3} + 27y^{3} = (2x + 3y)(4x^{2} 6xy + 9y^{2}).$ (8)
- 8x³-27y³ is in the form of $x^3 y^3 = (x y)(x^2 + xy + y^2)$ Thus, 8x³-27y³ = (2x 3y)(4x² + 6xy + 9y²) (9)

This instructional aid was prepared by the Tallahassee Community College Learning Commons.