The Quadratic Formula

Using the quadratic formula, we can solve all quadratic equations.

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Solve the equations $6x - 1 = x^2$

First we put the equation in **standard form** by subtracting x^2 from each side.

$$-x^2 + 6x - 1 = 0$$

We will use the quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, where a = -1, b = 6, c = -1.

 $\frac{-6\pm\sqrt{(6)^2-(4)(-1)(-1)}}{2(-1)}$ Substitute a = -1, b = 6, c = -1 into the formula. Place the parentheses on the numbers to avoid making mistakes on "signs" $\frac{-6\pm\sqrt{36-4}}{-2}$ Simplify. $\frac{-6\pm\sqrt{32}}{2}$ Simplify the radical part, using the fact that $\sqrt{32} = \sqrt{16} \cdot \sqrt{2} = 4\sqrt{2}$. $\frac{-6 \pm 4\sqrt{2}}{-2}$ or $\frac{-6}{-2} \pm \frac{4\sqrt{2}}{-2}$ Factor the numerator (-2 is a factor of both terms in)the numerator). $\frac{-2(3\pm 2\sqrt{2})}{-2}$ Cancel the common factor of -2 from the numerator and denominator. $3 + 2\sqrt{2}$ There are two distinct solutions. Note: the fact that $b^2 - 4ac$ is not equal to a perfect $3 + 2\sqrt{2}$ and $3 - 2\sqrt{2}$ square indicates that it is not possible to solve this equation by factoring.

Exercises: Solve the equations using quadratic formula.

1. $x^2 + 2x - 24 = 0$ **2.** 2x(x-3) = 2 **3.** $\frac{1}{2}x^2 + \frac{3}{2}x - 2 = 0$ **4.** $7x^2 + 4 = 2x$

Answers:

1.
$$\{4,-6\}$$
 2. $\left\{\frac{3\pm\sqrt{13}}{2}\right\}$ **3.** $\{-4,1\}$ **4.** $\left\{\frac{1\pm3i\sqrt{3}}{7}\right\}$

This instructional aid was prepared by the Learning Commons at Tallahassee Community College