The Quadratic Formula

Using the quadratic formula, we can solve all quadratic equations.
If $\mathrm{ax}^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
Solve the equations $6 x-1=x^{2}$
First we put the equation in standard form by subtracting x^{2} from each side.
$-x^{2}+6 x-1=0$
We will use the quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$, where $a=-1, b=6, c=-1$.

$$
\begin{array}{ll}
\frac{-6 \pm \sqrt{(6)^{2}-(4)(-1)(-1)}}{2(-1)} & \begin{array}{l}
\text { Substitute } \boldsymbol{a}=\mathbf{- 1 , \boldsymbol { b } = \mathbf { 6 } , \boldsymbol { c } = \mathbf { 1 } \text { into the formula. Place }} \\
\text { the parentheses on the numbers to avoid making } \\
\text { mistakes on "signs" }
\end{array} \\
\frac{-6 \pm \sqrt{36-4}}{-2} & \text { Simplify. } \\
\frac{-6 \pm \sqrt{32}}{-2} & \begin{array}{l}
\text { Simplify the radical part, using the fact that } \\
\sqrt{32}=\sqrt{16} \cdot \sqrt{2}=4 \sqrt{2} .
\end{array} \\
\frac{-6 \pm 4 \sqrt{2}}{-2} \text { or } \frac{-6}{-2} \pm \frac{4 \sqrt{2}}{-2} & \begin{array}{l}
\text { Factor the numerator (}-2 \text { is a factor of both terms in } \\
\text { the numerator). }
\end{array} \\
3 \pm 2 \sqrt{2}) & \begin{array}{l}
\text { Cancel the common factor of }-2 \text { from the numerator } \\
\text { and denominator. }
\end{array} \\
3+2 \sqrt{2} \text { and } 3-2 \sqrt{2} & \begin{array}{l}
\text { There are two distinct solutions. }
\end{array} \\
& \begin{array}{l}
\text { Note: the fact that } b^{2}-4 a c \text { is not equal to a perfect } \\
\text { square indicates that it is not possible to solve this } \\
\text { equation by factoring. }
\end{array}
\end{array}
$$

Exercises: Solve the equations using quadratic formula.

1. $x^{2}+2 x-24=0$
2. $2 x(x-3)=2$
3. $\frac{1}{2} x^{2}+\frac{3}{2} x-2=0$
4. $7 x^{2}+4=2 x$

Answers:

1. $\{4,-6\}$
2. $\left\{\frac{3 \pm \sqrt{13}}{2}\right\}$
3. $\{-4,1\}$
4. $\left\{\frac{1 \pm 3 i \sqrt{3}}{7}\right\}$
