A one-tailed Hypothesis Test of a Proportion

In testing a Hypothesis about a population proportion, there are FIVE steps:

1. Identify the claim and Hypotheses
2. Information and Test Statistic.

3 . Find the p-value
4. Interpret Test Results
5. Write the Conclusion

Identify the Claim and write the Null Hypothesis $\left(\mathrm{H}_{0}\right)$ and the Alternative Hypothesis $\left(\mathrm{H}_{1}\right)$.

Example: Medics and teachers believe that a new vitamin supplement will help decrease the number of students absent due to sickness during the winter. They took a sample of 742 students. They gave the vitamin supplement to the students for the months of August through December, and observed about 8\% of the students were absent due to sickness. Historically, students have been absent about 10% of the time due to illness. Is the decrease significantly large enough (significance level $=0.05$) to conclude that the vitamin supplement reduces absenteeism due to sickness?
$H_{0}: p=0.10$, this is the usual proportion of absentees.
$H_{1}: p<0.10$, teachers and medics believe (i.e., claim) the supplement will decrease this proportion.

Identify the information and calculate the test statistic.

For this example:
Population Proportion: $\mathrm{p}=0.01$
Significance Level $=0.05$.
The test statistic is:

$$
Z=\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} Z=\frac{0.08-0.10}{\sqrt{\frac{0.10(1-0.10)}{742}}} Z=-1.815978463
$$

Find the p-value, begin by considering the Standard Normal Distribution.
This Hypothesis Test is a one-tailed (left-tail) test because H_{0} will only be rejected in favor of H_{1} if the test statistic is significantly less than the mean. Notice that the inequality symbol, <, in the Alternative Hypothesis points in the direction of the tail.

The Test Statistic, $Z=-1815978463$. For a left-tail test, the p-value is the area under the curve to the left of the test statistic - the shaded area on the drawing.

To find the p-value, using the normalcdf function on the calculator:
$2^{\text {nd }}$ VARS >2 : normalcdf > ENTER: normalcdf (left bound, right bound, mean, standard deviation): normalcdf (-E99,-1.815978463,0,1) $=0.0346867815 \approx 0.035$

Interpreting the Test results. Compare the P -value with the Significance Level $=\mathbf{0 . 0 5}$.
The p-value of 0.035 is less than the Significance Level $\alpha=0.05$ so the decision is to reject the Null Hypothesis. Because H_{0} is rejected, the evidence points to the Alternative Hypothesis, H_{1}. Therefore, there is evidence to support the claim.

Conclusion: Write the conclusion in English in the context of the problem.

The belief held by the medics and teachers is valid; administrating the vitamin supplement significantly decreases the absentees due to sickness.

With the Texas Instruments calculator:

Example:

Press STAT scroll to TESTS select option 5: 1-PropZTest press ENTER

This is the calculator input:
po: 0.1
X: (.08)(742) = 59.36 (round to 59 the nearest whole number or you will get an error message.)
n: 742
prop: < po
Calculate

This is the calculator output:

$$
\begin{aligned}
& \text { 1-PropZTest } \\
& \qquad \begin{array}{l}
\text { prop }<.1 \\
Z=-1.860031849 \\
\text { p }=.0314404472 \\
\text { p-hat }=.0795148248 \\
\mathrm{n}=742
\end{array}
\end{aligned}
$$

When using the calculator, both the test statistic and the p-value are different from "by hand" due to the rounding done ($59.36 \approx 59$). However the conclusion, based on the p - value, is the same.

