Solution concentration

%mass/volume: used for solutions used in intravenous (IV) therapy.

%mass/volume = g of solute/mL of solution x 100 (the units must be in g/mL EG saline Iv solution: 0.9% NaCl. That is 0.9g NaCl in 100mL water

EXERCISE:

- 1. Calculate the % m/v of NaCl solution: 0.15g NaCl in 275mL water.
- 2. How would you prepare 2L of a 5% dextrose solution?

Mole, Molarity and Avogadro's number $(6x10^{23})$ 1mol of atoms = $6x10^{23}$ atoms 1mol of molecules = $6x10^{23}$ molecules

1 single carbon atom: 12.01amu/mol 1 mole of carbon atoms: 12.01 g/mol

The mass of 1 mol of compound is called the molar mass (is the bottom number in the box for each element)

EXERCISE:

- 1. Calculate the molar mass of sucrose C₁₂H₂₂O₁₁
- 2. How many molecules of sucrose are found in the molar mass of sucrose?

Molarity (M) is the number of moles of solute in one liter of solvent (moles/liter)

M = moles of solute/L of solution

EXERCISE:

1. A 1.5L solution contains 0.018 mol CO2. What is the concentration of CO2 in moles/L (molarity)

- 2. How would you prepare the following solutions:
 - a. 1L 1M solution of sucrose
 - b. 1L 2M solution of sucrose
 - c. 500mL 1M sucrose
- 3. The molar mass of NaCl is 58g/mol. How many grams of NaCl are in 2L of 0.3M solution of NaCL?

PH = -log [H⁺] The measure of acidity/alkalinity

Concentration in molarity

EXERCISE:

Calculate the pH for the following solutions:

- 1. $[H^{+}] = 1 \times 10^{-7}$, pH = 2. $[H^{+}] = 1 \times 10^{-4}$, pH = 3. $[H^{+}] = 1 \times 10^{-9}$, pH =