BALANCING REDOX REACTIONS

ACIDIC SOLUTIONS

1. Divide reaction into half reactions.
$\mathrm{Cr}_{2} \mathrm{O}^{2-}+\mathrm{Mn}^{2+}->\mathrm{Cr}^{3+}+\mathrm{MnO}_{4}{ }^{1-}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow \mathrm{Cr}^{3+} \quad$ and $\quad \mathrm{Mn}^{2+} \rightarrow \mathrm{MnO}_{4}{ }^{1-}$
2. Balance all other elements except for $\mathrm{H} \& \mathrm{O}$.

$$
\begin{array}{lll}
\mathrm{Cr}_{2} \mathrm{O}^{2-} & -> & 2 \mathrm{Cr}^{3+} \\
\mathrm{Mn}^{2+} & \rightarrow & \mathrm{MnO}_{4}^{1-}
\end{array}
$$

3. Balance O by adding $\mathrm{H}_{2} \mathrm{O}$.

$$
\begin{aligned}
\mathrm{Cr}_{2} \mathrm{O}^{2-} & ->
\end{aligned} 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

4. Balance H by adding H^{+}.

$$
\begin{array}{lll}
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} & -> & 2 \mathrm{Cr}^{3+} \\
\mathrm{Mn}^{2+} & +4 \mathrm{H}_{2} \mathrm{O} & -> \\
\mathrm{MnO}_{4}{ }^{1-} & +8 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}^{+}
\end{array}
$$

5. Balance charge by adding electrons (e^{-}) to the side that has more positive charge.

$$
\begin{aligned}
& (-2++14=+12) \quad(+6+0=+6) \\
& \mathrm{Cr}_{2} \mathrm{O}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \quad \rightarrow \quad 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \\
& (+2+0=+2) \quad(-1++8=+7) \\
& \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MnO}_{4}{ }^{1-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}
\end{aligned}
$$

6. Make e^{-}gain $=e^{-}$loss. Multiply first reaction by 5 so ($6 \times 5 e^{-}=30 e^{-}$) and the second reaction by 6 so ($5 \times 6 \mathrm{e}^{-}=30 \mathrm{e}^{-}$).

$$
\begin{aligned}
& 5 \mathrm{Cr}_{2} \mathrm{O}^{2-}+70 \mathrm{H}^{+}+30 \mathrm{e}^{-} \rightarrow \\
& 6 \mathrm{Mn}^{2+}+24 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cr}^{3+}+35 \mathrm{H}_{2} \mathrm{O} \\
& 6 \mathrm{MnO}_{4}^{1-}+48 \mathrm{H}^{+}+30 \mathbf{e}^{-}
\end{aligned}
$$

7. Add reactions together and cancel like species on both sides of the reaction.

$$
5 \mathrm{Cr}_{2} \mathrm{O}^{2-}+22 \mathrm{H}^{+}+6 \mathrm{Mn}^{2+} \rightarrow 10 \mathrm{Cr}^{3+}+11 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{MnO}_{4}{ }^{1-}
$$

BASIC SOLUTIONS

8. If the reaction SPECIFICALLY states that the reaction occurs in basic solution, FIRST follow steps 1 through 7 for acidic solutions. THEN, convert to basic solutions by adding the same quantity of hydroxide ion $\left(\mathrm{OH}^{-}\right)$to both sides of the reaction to equal the quantity of hydrogen ion present $\left(\mathrm{H}^{+}\right)$.
$2 \mathrm{CrO}_{4}{ }^{2-}+3 \mathrm{Mn}^{2+}+4 \mathrm{H}^{+}->2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Cr}^{3+}+3 \mathrm{MnO}_{2}$
THUS:
$2 \mathrm{CrO}_{4}{ }^{2-}+3 \mathrm{Mn}^{2+}+4 \mathrm{H}^{+}+4 \mathrm{OH}^{-}->2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Cr}^{3+}+3 \mathrm{MnO}_{2}+4 \mathrm{OH}^{-}$
9. Combine the H^{+}and OH^{-}ion together to form water.

$$
2 \mathrm{CrO}_{4}^{2-}+3 \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Cr}^{3+}+3 \mathrm{MnO}_{2}+4 \mathrm{OH}^{-}
$$

10. Cancel out water to obtain final reaction.

$$
2 \mathrm{CrO}_{4}{ }^{2-}+3 \mathrm{Mn}^{2+}+2 \mathbf{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{MnO}_{2}+4 \mathrm{OH}^{-}
$$

