Organic Chemistry Practice Problems

Organic Chemistry I Practice Set #1 (Chapter 1 – Carey)

Consider the following acid-base reaction:

\[\text{CH}_3\text{CH}_2\text{O}^- \text{K}^+ + \begin{array}{c} \text{acid} \\ \text{base} \end{array} \rightleftharpoons \text{CH}_3\text{CH}_2\text{OH} + \begin{array}{c} \text{conjugate acid} \\ \text{conjugate base} \end{array} \text{K}^+ \]

To decide on which side the equilibrium lies:
1) Identify conjugate acid-base pairs (connect above with lines);
2) If you know the pK_a values (or they are given), the equilibrium lies **AWAY FROM THE STRONGER ACID**. The stronger acid has lower pK_a.

Instructions: **Draw the correct Lewis Structures for each acid and conjugate base in the table below. Place a * (star) next to each one that has resonance structure(s). HA = acid; A^- = conjugate base**

<table>
<thead>
<tr>
<th>HA</th>
<th>pK_a</th>
<th>A^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI</td>
<td>-10</td>
<td>I^-</td>
</tr>
<tr>
<td>HBr</td>
<td>-6</td>
<td>Br^-</td>
</tr>
<tr>
<td>HCl</td>
<td>-4</td>
<td>Cl^-</td>
</tr>
<tr>
<td>CF_3SO_3H</td>
<td>-6</td>
<td>CF_3SO_3^-</td>
</tr>
<tr>
<td>H_2SO_4</td>
<td>-5</td>
<td>HSO_4^-</td>
</tr>
<tr>
<td>H_2O^+</td>
<td>-2</td>
<td>H_2O</td>
</tr>
<tr>
<td>HSO_4^-</td>
<td>2</td>
<td>SO_4^{2-}</td>
</tr>
<tr>
<td>H_3PO_4</td>
<td>2</td>
<td>H_2PO_4^-</td>
</tr>
<tr>
<td>HF</td>
<td>3.5</td>
<td>F^-</td>
</tr>
<tr>
<td>CH_3CO_2H</td>
<td>4.7</td>
<td>CH_3CO_2^-</td>
</tr>
<tr>
<td>PhNH_3^-</td>
<td>4.6</td>
<td>PhNH_2</td>
</tr>
<tr>
<td>C_5H_5N^(+)(pyridinium)</td>
<td>5.2</td>
<td>C_5H_5N</td>
</tr>
<tr>
<td>H_2CO_3</td>
<td>6.4</td>
<td>HCO_3^-</td>
</tr>
<tr>
<td>H_2PO_4^-</td>
<td>7</td>
<td>HPO_4^{2-}</td>
</tr>
<tr>
<td>H_2S</td>
<td>7</td>
<td>HS^-</td>
</tr>
<tr>
<td>PhSH</td>
<td>7</td>
<td>PhS^-</td>
</tr>
<tr>
<td>NH_4^+</td>
<td>9</td>
<td>NH_3</td>
</tr>
<tr>
<td>(CH_3CO)_2CH_2</td>
<td>9</td>
<td>(CH_3CO)_2CH^-</td>
</tr>
<tr>
<td>HCN</td>
<td>9</td>
<td>CN^-</td>
</tr>
<tr>
<td>PhOH</td>
<td>10</td>
<td>PhO^-</td>
</tr>
<tr>
<td>HCO_3^-</td>
<td>10</td>
<td>CO_3^{2-}</td>
</tr>
<tr>
<td>CH_3SH</td>
<td>11</td>
<td>CH_3S^-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HA</th>
<th>pK_a</th>
<th>A^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH_3CH_2NH_3^+</td>
<td>11</td>
<td>CH_3CH_2NH_2</td>
</tr>
<tr>
<td>CH_3COCH_2CO_2CH_2CH_3</td>
<td>11</td>
<td>[CH_3COCHCO_2CH_2CH_3^-]</td>
</tr>
<tr>
<td>HPO_4^{2-}</td>
<td>12</td>
<td>PO_4^{3-}</td>
</tr>
<tr>
<td>(CH_3CH_2O_2C)_2CH_2</td>
<td>13</td>
<td>(CH_3CH_2O_2C)_2CH^-</td>
</tr>
<tr>
<td>(NH_2)_2C=NH_2^-</td>
<td>13</td>
<td>(NH_2)_2C=NH</td>
</tr>
<tr>
<td>CH_3CONH_2</td>
<td>14</td>
<td>CH_3CONH^-</td>
</tr>
<tr>
<td>H_2O</td>
<td>15.7</td>
<td>H^-</td>
</tr>
<tr>
<td>CH_3OH</td>
<td>15.2</td>
<td>CH_3O^-</td>
</tr>
<tr>
<td>CH_3CH_2OH</td>
<td>16</td>
<td>CH_3CH_2O^-</td>
</tr>
<tr>
<td>(CH_3)_2CHOH</td>
<td>17</td>
<td>(CH_3)_2CHO^-</td>
</tr>
<tr>
<td>(CH_3)_3COH</td>
<td>18</td>
<td>(CH_3)_3CO^-</td>
</tr>
<tr>
<td>CH_3COCH_3</td>
<td>19</td>
<td>CH_3COCH_3^-</td>
</tr>
<tr>
<td>CH_3CO_2CH_2CH_3</td>
<td>25</td>
<td>CH_3CO_2CH_2CH_3^-</td>
</tr>
<tr>
<td>HC=CH</td>
<td>26</td>
<td>HC=CH^-</td>
</tr>
<tr>
<td>H_2</td>
<td>35</td>
<td>H^+</td>
</tr>
<tr>
<td>NH_3</td>
<td>36</td>
<td>NH_3^-</td>
</tr>
<tr>
<td>PhCH_3</td>
<td>41</td>
<td>[PhCH_2]^+</td>
</tr>
<tr>
<td>CH_2=CHCH_3</td>
<td>43</td>
<td>[CH_2=CHCH_2]^+</td>
</tr>
<tr>
<td>PhH</td>
<td>43</td>
<td>Ph^+</td>
</tr>
<tr>
<td>CH_2=CH_2</td>
<td>45</td>
<td>CH_2=CH^-</td>
</tr>
<tr>
<td>CH_3CH_3</td>
<td>62</td>
<td>[CH_3CH_2]^-</td>
</tr>
</tbody>
</table>

This resource was prepared by the Tallahassee Community College Learning Commons
Adapted from practice handouts created by Dr. EF Hilinski of Florida State University
Organic Chemistry Practice Problems

Acids

- HBr
- HI
- HCl
- CF₃SO₃H
- H₂SO₄
- H₃O⁺
- HSO₄⁻
- H₃PO₄
- HF
- CH₃CO₂H
- PhNH₃⁺
- C₅H₅N⁺

Organic Chemistry I Answers to Practice Set #1 (Chapter 1 - Carev)

- Br⁻
- I⁻
- Cl⁻
- *** CF₃SO₃⁻
- *** HSO₄⁻
- H₂O
- *** H₂PO₄⁻
- F⁻
- *** CH₃CO₂⁻
- *** PhNH₂
- *** C₅H₅N⁻

Conjugate Bases

- Br⁻
- I⁻
- Cl⁻
- CF₃SO₃⁻
- HSO₄⁻
- H₂O
- H₂PO₄⁻
- F⁻
- CH₃CO₂⁻
- PhNH₂
- C₅H₅N⁻

This resource was prepared by the Tallahassee Community College Learning Commons
Adapted from practice handouts created by Dr. EF Hillinski of Florida State University
Organic Chemistry Practice Problems

Acids

Organic Chemistry I Answers to Practice Set #1 (Chapter 1 - Carey)

Conjugate Bases

H₂CO₃

*** HCO₃⁻

H₂PO₄⁻ ***

*** HPO₄²⁻

H₂S

HS⁻

PhSH ***

*** PhS⁻

NH₄⁺

NH₃

(CH₃CO)₂CH

*** (CH₃CO)₂CH⁻

HCN

CN⁻

PhOH ***

*** PhO⁻

HCO₃⁻ ***

*** CO₃²⁻

CH₃SH

CH₃S⁻

CH₃CH₂NH

CH₃CH₂NH₂

This resource was prepared by the Tallahassee Community College Learning Commons
Adapted from practice handouts created by Dr. EF Hilinski of Florida State University
Acids

Organic Chemistry I Answers to Practice Set #1 (Chapter 1 – Carey)

Conjugate Bases

ethyl 3-oxobutanoate

HPO₄²⁻ ***

diethyl malonate

(NH₂)C=NH₂⁺ ***

CH₃CONH₂

OH⁻

H₂O

CH₃OH

CH₃CH₂OH

(CH₃)₂CHOH

(CH₃)₃COH

This resource was prepared by the Tallahassee Community College Learning Commons
Adapted from practice handouts created by Dr. EF Hilinski of Florida State University
Organic Chemistry Practice Problems

Acids

<table>
<thead>
<tr>
<th>Chemical Structure</th>
<th>Formula</th>
<th>Conjugate Base</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH₃COCH₃</td>
<td>*** CH₃COCH₂⁻</td>
</tr>
<tr>
<td></td>
<td>CH₃CO₂H</td>
<td>*** CH₃CO₂⁻</td>
</tr>
<tr>
<td></td>
<td>HC≡CH</td>
<td>HC≡CH⁻</td>
</tr>
<tr>
<td></td>
<td>NH₃</td>
<td>NH₂⁻</td>
</tr>
<tr>
<td></td>
<td>PhCH₃</td>
<td>*** PhCH₂⁻</td>
</tr>
<tr>
<td></td>
<td>CH₂=CHCH₃</td>
<td>*** CH₂=CHCH₂⁻</td>
</tr>
<tr>
<td></td>
<td>PhH</td>
<td>*** Ph⁻</td>
</tr>
<tr>
<td></td>
<td>CH₂=CH₂</td>
<td>*** CH₂=CH⁻</td>
</tr>
<tr>
<td></td>
<td>CH₃CH₃</td>
<td>CH₃CH₂⁻</td>
</tr>
</tbody>
</table>

Conjugate Bases

<table>
<thead>
<tr>
<th>Chemical Structure</th>
<th>Formula</th>
<th>Conjugate Base</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH₃COCH₂⁻</td>
<td>*** CH₃CO⁻</td>
</tr>
<tr>
<td></td>
<td>CH₃CO₂⁻</td>
<td>*** CH₃CO₂⁻</td>
</tr>
<tr>
<td></td>
<td>HC≡CH⁻</td>
<td>HC≡CH⁻</td>
</tr>
<tr>
<td></td>
<td>NH₂⁻</td>
<td>NH₂⁻</td>
</tr>
<tr>
<td></td>
<td>PhCH₂⁻</td>
<td>*** Ph⁻</td>
</tr>
<tr>
<td></td>
<td>CH₂=CHCH₂⁻</td>
<td>*** CH₂=CHCH₂⁻</td>
</tr>
<tr>
<td></td>
<td>Ph⁻</td>
<td>Ph⁻</td>
</tr>
<tr>
<td></td>
<td>CH₂=CH⁻</td>
<td>*** CH₂=CH⁻</td>
</tr>
<tr>
<td></td>
<td>CH₃CH₂⁻</td>
<td>CH₃CH₂⁻</td>
</tr>
</tbody>
</table>

This resource was prepared by the Tallahassee Community College Learning Commons
Adapted from practice handouts created by Dr. EF Hilinski of Florida State University